Advertisement

Electrocatalysis

, Volume 10, Issue 5, pp 540–548 | Cite as

Synthesis of 3D Flower-Like Ni0.6Zn0.4O Microspheres for Electrocatalytic Oxidation of Methanol

  • Shengliang WeiEmail author
  • Lihong Qian
  • Dongling Jia
  • Yuqing MiaoEmail author
Original Research

Abstract

The 3D flower-like Ni0.6Zn0.4O microspheres were prepared by calcination treatment of Ni–Zn LDHs (layered double hydroxides) that were obtained through a hydrothermal method. The yielded Ni0.6Zn0.4O microspheres were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET). The results showed that the calcinated microspheres of Ni0.6Zn0.4O still well maintained the flower-like architecture of Ni–Zn LDHs. The surface area, total pore volume, and average pore diameter of the Ni0.6Zn0.4O microspheres were obtained with the values of 36.106 m2 g−1, 0.111 cm3 g−1, and 5.676 nm, respectively. As modified anode active materials, the Ni0.6Zn0.4O microspheres exhibited excellent electrocatalytic performance and fast electrochemical kinetics for methanol oxidation in strong alkaline electrolyte where the high surface area of flower-like Ni0.6Zn0.4O microspheres provides the high contact probability between catalysts and reactants. The presence of Zn also improves the electron transfer within catalysts inside. Also, the Ni0.6Zn0.4O modified electrode maintained good electrocatalytic performance during the term of 36,000 s.

Graphical abstract

Diagram of the formation of the flower-like Ni0.6Zn0.4O microspheres and CVs of Ni0.6Zn0.4O/GCE (a, d), NiO/GCE (b, e), and ZnO/GCE (c, f) in KOH solution without (a–c) and with (d–f) 0.1 M methanol.

Keywords

Ni0.6Zn0.4Methanol Electro-oxidation Flowerlike 

Notes

References

  1. 1.
    P. Ma, H. Ma, S. Sabatino, A. Galia, O. Scialdone, Electrochemical treatment of real wastewater. Part 1: effluents with low conductivity. Chem. Eng. J. 336, 133–140 (2018)CrossRefGoogle Scholar
  2. 2.
    V. Thiagarajan, P. Karthikeyan, R. Manoharan, S. Sampath, A. Hernández-Ramírez, M.E. Sánchez-Castro, I.L. Alonso-Lemus, F.J. Rodríguez-Varela, Pt-Ru-NiTiO3 nanoparticles dispersed on vulcan as high performance electrocatalysts for the methanol oxidation reaction (MOR). Electrocatalysis 9(5), 582–592 (2018)CrossRefGoogle Scholar
  3. 3.
    D. Fa, Z. Mao, Z. Hui, Y. Jiang, Y. Miao, 3D flower-like Ni–Co–S with high specific surface area for the electrocatalytic oxidation of methanol. Polyhedron 144, 11–17 (2018)CrossRefGoogle Scholar
  4. 4.
    X. Guo, R. Cui, H. Huang, C. Li, H. Yao, B. Liu, L. Zhang, B. Xu, J. Dong, B. Sun, Facile synthesis of Ni-based catalysts by adsorption and conversion of metal ions on graphene oxide for methanol oxidation. Electrocatalysis 9(4), 429–436 (2018)CrossRefGoogle Scholar
  5. 5.
    S. Luo, Y. Chen, A. Xie, Y. Kong, Y. Tao, Y. Pan, C. Yao, Synthesis of PtNFs/PANI/NG with enhanced electrocatalytic activity towards methanol oxidation. Ionics 21(5), 1277–1286 (2015)CrossRefGoogle Scholar
  6. 6.
    X. Mingshu, C. Rui, H. Meifeng, Z. Mao, M. Yuqing, ACS Appl. Mater. Interfaces 7, 26101 (2015)CrossRefGoogle Scholar
  7. 7.
    T. Lena, J.K. Ranney, K.N. Williams, S.W. Boettcher, JACS 134, 17253 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Wang, L. Ji, S. Zuo, Z. Chen, Hierarchically structured 3D integrated electrodes by galvanic replacement reaction for highly efficient water splitting. Adv. Energy Mater. 7(14), 1700107 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Xiao, Y. Tian, Y. Yan, F. Kai, Y. Miao, Electrodeposition of Ni(OH)2/NiOOH in the presence of urea for the improved oxygen evolution. Electrochim. Acta 164, 196–202 (2015)CrossRefGoogle Scholar
  10. 10.
    X. Liang, M. Xiao, M. Xu, D. Yang, Y. Yan, Y. Tian, Y. Miao, Simultaneous in situ formation of Ni-based catalysts at the anode for glycerol oxidation and at the cathode for hydrogen evolution. J. Appl. Electrochem. 46(1), 1–8 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Xiao, Y. Miao, W. Li, Y. Yang, X. Liang, Electrochim. Acta 178, S0013468615302516 (2015)Google Scholar
  12. 12.
    Y. Feng, Z. Lei, T. You, Z. Li, L. Xiang, Z. Wen, Mater. Lett. 194, 185 (2017)CrossRefGoogle Scholar
  13. 13.
    W. Wang, R. Li, L. Liu, R. Zhang, B. Wang, J. Solid State Electrochem. 19, 2001 (2015)CrossRefGoogle Scholar
  14. 14.
    Z. Yang, H. Zhou, J. Zhang, W. Cao, Relationship between Al/Mg ratio and the stability of single-layer hydrotalcite. Acta Phys. Chim. Sin. 23(6), 795–800 (2007)CrossRefGoogle Scholar
  15. 15.
    H. Kang, M. Leoni, H. He, G. Huang, X. Yang, Well-crystallized CO32--type LiAl-LDH from urea hydrolysis of an aqueous chloride solution. Eur. J. Inorg. Chem. 2012(24), 3859–3865 (2012)CrossRefGoogle Scholar
  16. 16.
    M.M. Rao, B.R. Reddy, M. Jayalakshmi, V.S. Jaya, B. Sridhar, Hydrothermal synthesis of Mg–Al hydrotalcites by urea hydrolysis. Mater. Res. Bull. 40(2), 347–359 (2005)CrossRefGoogle Scholar
  17. 17.
    Q. Li, Z. Lu, T. Xu, X. Wu, T. Yang, Y. Li, Z. Huo, X. Sun, D. Xue, Adv. Energy Mater. 5 (2015)Google Scholar
  18. 18.
    N.R. Mathe, M.R. Scriba, R.S. Rikhotso, N.J. Coville, Electrocatalysis 9, 388 (2017)CrossRefGoogle Scholar
  19. 19.
    M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257(7), 2717–2730 (2011)CrossRefGoogle Scholar
  20. 20.
    E. Rı́Os, H. Nguyen-Cong, J.F. Marco, J.R. Gancedo, P. Chartier, J.L. Gautier, Indirect oxidation of ethylene glycol by peroxide ions at Ni0.3Co2.7O4 spinel oxide thin film electrodes. Electrochim. Acta 45(27), 4431–4440 (2000)CrossRefGoogle Scholar
  21. 21.
    W. Yu, L. Li, H. Zhang, Y. Jiao, Y. Mu, J. Mater. Chem. A 3, 22393 (2015)CrossRefGoogle Scholar
  22. 22.
    D. Ju, H. Zhang, Z. Yan, L. Pan, L. Li, W. Yu, J. Power Sources 372, 46 (2017)CrossRefGoogle Scholar
  23. 23.
    M.S. Akple, J. Low, S. Wageh, A.A. Al-Ghamdi, J. Yu, J. Zhang, Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures. Appl. Surf. Sci. 358, 196–203 (2015)CrossRefGoogle Scholar
  24. 24.
    X. Yu, J. Yu, C. Bei, M. Jaroniec, Synthesis of hierarchical flower-like AlOOH and TiO2/AlOOH superstructures and their enhanced photocatalytic properties. J. Phys. Chem. C 113(40), 17527–17535 (2009)CrossRefGoogle Scholar
  25. 25.
    D. Chen, S.D. Minteer, Mechanistic study of nickel based catalysts for oxygen evolution and methanol oxidation in alkaline medium. J. Power Sources 284, 27–37 (2015)CrossRefGoogle Scholar
  26. 26.
    K.K. Upadhyay, S. Eugénio, R.D. Noce, T.M. Silva, M.J. Carmezim, M.F. Montemor, Hydrothermally grown Ni0.7Zn0.3O directly on carbon fiber paper substrate as an electrode material for energy storage applications. Int. J. Hydrog. Energy 41(23), 9876–9884 (2016)CrossRefGoogle Scholar
  27. 27.
    N. Spinner, W.E. Mustain, Effect of nickel oxide synthesis conditions on its physical properties and electrocatalytic oxidation of methanol. Electrochim. Acta 56(16), 5656–5666 (2011)CrossRefGoogle Scholar
  28. 28.
    A.I. Ciszewski, Electrochim. Acta 76, 462 (2012)CrossRefGoogle Scholar
  29. 29.
    L.S. Yuan, Y.X. Zheng, M.L. Jia, S.J. Zhang, X.L. Wang, C. Peng, Nanoporous nickel-copper-phosphorus amorphous alloy film for methanol electro-oxidation in alkaline medium. Electrochim. Acta 154, 54–62 (2015)CrossRefGoogle Scholar
  30. 30.
    M.A. Domínguez-Crespo, A.M. Torres-Huerta, B. Brachetti-Sibaja, A. Flores-Vela, Electrochemical performance of Ni–RE (RE = rare earth) as electrode material for hydrogen evolution reaction in alkaline medium. Int. J. Hydrog. Energy 36(1), 135–151 (2011)CrossRefGoogle Scholar
  31. 31.
    X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, Z. Lin, Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem. Int. Ed. 55(21), 6290–6294 (2016)CrossRefGoogle Scholar
  32. 32.
    Y. Yu, J. Zhang, M. Zhong, S. Guo, Co3O4 nanosheet arrays on Ni foam as electrocatalyst for oxygen evolution reaction. Electrocatalysis 9(6), 653–661 (2018)CrossRefGoogle Scholar
  33. 33.
    J. Li, Z. Luo, Y. Zuo, J. Liu, T. Zhang, P. Tang, J. Arbiol, J. Llorca, A. Cabot, NiSn bimetallic nanoparticles as stable electrocatalysts for methanol oxidation reaction. Appl. Catal. B Environ. 234, 10–18 (2018)CrossRefGoogle Scholar
  34. 34.
    N. Ullah, M. Xie, C.J. Oluigbo, Y. Xu, J. Xie, H.U. Rasheed, M. Zhang, Nickel and cobalt in situ grown in 3-dimensional hierarchical porous graphene for effective methanol electro-oxidation reaction. J. Electroanal. Chem. 838, 7–15 (2019)CrossRefGoogle Scholar
  35. 35.
    W. Yang, X. Yang, J. Jia, C. Hou, H. Gao, Y. Mao, C. Wang, J. Lin, X. Luo, Oxygen vacancies confined in ultrathin nickel oxide nanosheets for enhanced electrocatalytic methanol oxidation. Appl. Catal. B Environ. 244, 1096–1102 (2019)CrossRefGoogle Scholar
  36. 36.
    T. Noor, N. Zaman, H. Nasir, N. Iqbal, Z. Hussain, Electro catalytic study of NiO-MOF/rGO composites for methanol oxidation reaction. Electrochim. Acta 307, 1–12 (2019)CrossRefGoogle Scholar
  37. 37.
    B. Kaur, R. Srivastava, B. Satpati, ACS Catal 6, acscatal.6b00525 (2016)CrossRefGoogle Scholar
  38. 38.
    Y. Jie, Y. Ni, M. Zhai, J. Phys. Chem. Solids 112, 119 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Bismuth ScienceUniversity of Shanghai for Science and TechnologyShanghaiChina
  2. 2.Shanghai Key Laboratory of Molecular ImagingShanghai University of Medicine and Health SciencesShanghaiChina

Personalised recommendations