Effect of Supporting Electrolyte on the Surface Corrosion and Anodic Oxidation Performance of Graphite Electrode

  • Kai Zhu
  • Xiaoli Ren
  • Xiuping Sun
  • Lijing Zhu
  • Zhirong SunEmail author
Original Research


This study presents a comparative investigation of supporting electrolyte effect on the surface corrosion and anodic oxidation performance of graphite electrode. The effect of electrolyte on the electrochemical behavior is investigated in solution containing 0.05 mol L−1 sodium salt, using current-overpotential curves and Tafel lines. The surface morphology and composition of the graphite anodes before and after electrolysis are characterized by scanning electron microscopy, X-ray diffraction, and Raman spectra. In aqueous solution, graphite anode is positive polarized, functionalizes the surface, and releases soluble organics. The light-absorbing corrosion products of graphite anode are recorded by a UV-Vis spectrophotometer in the ultraviolet wavelength range. Batch experiments on atrazine oxidation show that NaCl is more efficient than Na2SO4 and NaNO3 to promote the combustion of organics due to the mediated oxidation of the electrogenerated active chlorine species. The oxidation process is confirmed to employ a non-radical mechanism in which the organics are degraded at the active sites of graphite anode.

Graphical Abstract

Carbon anodes have been widely employed for organics removal during anodic oxidation process, however, oxidation of contaminants with these materials is usually accompanied by electro-corrosion. This paper presents a comparative investigation of supporting electrolyte effect on the surface corrosion and anodic oxidation performance, using graphite felt as the example, to extend our knowledge of the mechanistic behavior of carbon anodes.


Graphite anodes Electrolytes Surface corrosion Anodic oxidation 


Funding Information

This work was supported by National Natural Science Foundation of China (51778013 and 51478014) and Cultivation Fund for Beijing New Century Hundred Thousand and Ten Thousand Talents Project.

Compliance with Ethical Standards

Competing Interests

The authors declare no competing financial interest.

Supplementary material

12678_2019_541_MOESM1_ESM.docx (230 kb)
ESM 1 (DOCX 229 kb)


  1. 1.
    P.V. Nidheesh, M. Zhou, M.A. Oturan, An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 197, 210–227 (2018)CrossRefGoogle Scholar
  2. 2.
    D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Huebner, Evaluation of advanced oxidation processes for water and wastewater treatment – a critical review. Water Res. 139, 118–131 (2018)CrossRefGoogle Scholar
  3. 3.
    M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu, Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem. Eng. J. 284, 582–598 (2016)CrossRefGoogle Scholar
  4. 4.
    K.O. Badmus, J.O. Tijani, E. Massima, L. Petrik, Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process. Environ. Sci. Pollut. Res. 25(8), 7299–7314 (2018)CrossRefGoogle Scholar
  5. 5.
    C.K. Remucal, D. Manley, Environ. Sci. Water Res. Technol. 2, 565–579 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Chu, W. Wang, M. Wang, Anodic oxidation process for the degradation of 2, 4-dichlorophenol in aqueous solution and the enhancement of biodegradability. J. Hazard. Mater. 180(1-3), 247–252 (2010)CrossRefGoogle Scholar
  7. 7.
    I. Sires, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ. Sci. Pollut. Res. 21(14), 8336–8367 (2014)CrossRefGoogle Scholar
  8. 8.
    C.A. Martinez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 35(12), 1324–1340 (2006)CrossRefGoogle Scholar
  9. 9.
    H. Jalife-Jacobo, R. Feria-Reyes, O. Serrano-Torres, S. Gutierrez-Granados, J.M. Peralta-Hernandez, Diazo dye Congo Red degradation using a boron-doped diamond anode: an experimental study on the effect of supporting electrolytes. J. Hazard. Mater. 319, 78–83 (2016)CrossRefGoogle Scholar
  10. 10.
    A. Kapalka, G. Foti, C. Comninellis, Determination of the Tafel slope for oxygen evolution on boron-doped diamond electrodes. Electrochem. Commun. 10(4), 607–610 (2008)CrossRefGoogle Scholar
  11. 11.
    N. Katsuki, E. Takahashi, M. Toyoda, T. Kurosu, M. Iida, S. Wakita, Y. Nishiki, T. Shimamune, Water electrolysis using diamond thin-film electrodes. J. Electrochem. Soc. 145(7), 2358–2362 (1998)CrossRefGoogle Scholar
  12. 12.
    L. Wang, S. Yang, B. Wu, P. Li, Z. Li, Y. Zhao, Electrochim. Acta 206, 270–277 (2016)CrossRefGoogle Scholar
  13. 13.
    T. Duan, Y. Chen, Q. Wen, Y. Duan, Novel composition graded Ti/Ru–Sb–SnO2 electrode synthesized by selective electrodeposition and its application for electrocatalytic decolorization of dyes. J. Phys. Chem. C 119(14), 7780–7790 (2015)CrossRefGoogle Scholar
  14. 14.
    C.M. Fan, B. Hua, Y. Wang, Z.H. Liang, X.G. Hao, S.B. Liu, Y.P. Sun, Preparation of Ti/SnO2–Sb2O4 photoanode by electrodeposition and dip coating for PEC oxidations. Desalination 249(2), 736–741 (2009)CrossRefGoogle Scholar
  15. 15.
    V.K. Gupta, A. Nayak, S. Agarwal, B. Singhal, Comb. Chem. High T. Scr. 14, 284–302 (2011)Google Scholar
  16. 16.
    A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, V.K. Gupta, Removal of basic dye Auramine-O by ZnS:Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Adv. 5(24), 18438–18450 (2015)CrossRefGoogle Scholar
  17. 17.
    V.K. Gupta, N. Mergu, L.K. Kumawat, A.K. Singh, A reversible fluorescence “off–on–off” sensor for sequential detection of aluminum and acetate/fluoride ions. Talanta 144, 80–89 (2015)CrossRefGoogle Scholar
  18. 18.
    V.K. Gupta, M.R. Ganjali, P. Norouzi, H. Khani, A. Nayak, S. Agarwal, Electrochemical analysis of some toxic metals by ion–selective electrodes. Crit. Rev. Anal. Chem. 41(4), 282–313 (2011)CrossRefGoogle Scholar
  19. 19.
    V.K. Gupta, H. Karimi-Maleh, R. Sadegh, Int. J. Electrochem. Sci. 10, 303–316 (2015)Google Scholar
  20. 20.
    V.K. Gupta, A.K. Singh, L.K. Kumawat, Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion. Sensor. Actuators B Chem. 195, 98–108 (2014)CrossRefGoogle Scholar
  21. 21.
    V.K. Gupta, N. Atar, M.L. Yola, Z. Ustundag, L. Uzun, A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res. 48, 210–217 (2014)CrossRefGoogle Scholar
  22. 22.
    H. Karimi-Maleh, F. Tahernejad-Javazmi, N. Atar, M. Lutfi, V.K. Gupta, A.A. Ensafi, A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind. Eng. Chem. Res. 54(14), 3634–3639 (2015)CrossRefGoogle Scholar
  23. 23.
    M.L. Yola, V.K. Gupta, T. Eren, A.E. Sen, N. Atar, A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim. Acta 120, 204–211 (2014)CrossRefGoogle Scholar
  24. 24.
    M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 109(12), 6541–6569 (2009)CrossRefGoogle Scholar
  25. 25.
    M. Rueffer, D. Bejan, N.J. Bunce, Graphite: an active or an inactive anode? Electrochim. Acta 56(5), 2246–2253 (2011)CrossRefGoogle Scholar
  26. 26.
    Y.M. Awad, N.S. Abuzaid, Electrochemical oxidation of phenol using graphite anodes. Sep. Sci. Technol. 34(4), 699–708 (1999)CrossRefGoogle Scholar
  27. 27.
    C.C. Jara, D. Fino, V. Specchia, G. Saracco, R. Spinelli, Electrochemical removal of antibiotics from wastewaters. Appl. Catal. B Environ. 70(1-4), 479–487 (2007)CrossRefGoogle Scholar
  28. 28.
    A. Uranga-Flores, C. de la Rosa-Juarez, S. Gutierrez-Granados, D.C. de Moura, C.A. Martinez-Huitle, J.M. Peralta Hernandez, Electrochemical promotion of strong oxidants to degrade Acid Red 211: effect of supporting electrolytes. J. Electroanal. Chem. 738, 84–91 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Thiam, M. Zhou, E. Brillas, I. Sires, Appl. Catal. B Environ. 150, 116–125 (2014)CrossRefGoogle Scholar
  30. 30.
    C. Carvalho, A. Fernandes, A. Lopes, H. Pinheiro, I. Goncalves, Electrochemical degradation applied to the metabolites of Acid Orange 7 anaerobic biotreatment. Chemosphere 67(7), 1316–1324 (2007)CrossRefGoogle Scholar
  31. 31.
    M. Santana, L.A. De Faria, J. Boodts, Electrochemical characterisation and oxygen evolution at a heavily boron doped diamond electrode. Electrochim. Acta 50(10), 2017–2027 (2005)CrossRefGoogle Scholar
  32. 32.
    A.T. Marshall, L. Valsson-Bethune, Avoid the quasi-equilibrium assumption when evaluating the electrocatalytic oxygen evolution reaction mechanism by Tafel slope analysis. Electrochem. Commun. 61, 23–26 (2015)CrossRefGoogle Scholar
  33. 33.
    M. Sarno, E. Ponticorvo, Nanotechnology 28 (2017)Google Scholar
  34. 34.
    J. Jiang, X. Yao, C. Xu, Y. Su, L. Zhou, C. Deng, Influence of electrochemical oxidation of carbon fiber on the mechanical properties of carbon fiber/graphene oxide/epoxy composites. Compos. A: Appl. Sci. Manuf. 95, 248–256 (2017)CrossRefGoogle Scholar
  35. 35.
    K. Rankin, D. Bejan, N.J. Bunce, Electrochemical oxidation of the sulfide ion in synthetic geothermal brines in batch cells using coke electrodes. Ind. Eng. Chem. Res. 49(14), 6261–6266 (2010)CrossRefGoogle Scholar
  36. 36.
    J. Miao, H. Zhu, Y. Tang, Y. Chen, P. Wan, Graphite felt electrochemically modified in H2SO4 solution used as a cathode to produce H2O2 for pre-oxidation of drinking water. Chem. Eng. J. 250, 312–318 (2014)CrossRefGoogle Scholar
  37. 37.
    G. Zhang, M. Wen, S. Wang, J. Chen, J. Wang, Insights into electrochemical behavior and anodic oxidation processing of graphite matrix in aqueous solutions of sodium nitrate. J. Appl. Electrochem. 46(12), 1163–1176 (2016)CrossRefGoogle Scholar
  38. 38.
    C. Li, Y. Shi, X. Chen, D. He, L. Shen, N. Bao, Controlled synthesis of graphite oxide: formation process, oxidation kinetics, and optimized conditions. Chem. Eng. Sci. 176, 319–328 (2018)CrossRefGoogle Scholar
  39. 39.
    D.W. Boukhvalov, M.I. Katsnelson, Modeling of graphite oxide. J. Am. Chem. Soc. 130(32), 10697–10701 (2008)CrossRefGoogle Scholar
  40. 40.
    K.W. Hathcock, J.C. Brumfield, C.A. Goss, E.A. Irene, R.W. Murray, Incipient electrochemical oxidation of highly oriented pyrolytic graphite: correlation between surface blistering and electrolyte anion intercalation. Anal. Chem. 67(13), 2201–2206 (1995)CrossRefGoogle Scholar
  41. 41.
    Q. Yu, L.A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T.F. Chung, P. Peng, N.P. Guisinger, E.A. Stach, J. Bao, S. Pei, Y.P. Chen, Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10(6), 443–449 (2011)CrossRefGoogle Scholar
  42. 42.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97 (2006)Google Scholar
  43. 43.
    M.A. Rabah, N. Nassif, A. Azim, Electrochemical wear of graphite anodes during electrolysis of brine. Carbon 29(2), 165–171 (1991)CrossRefGoogle Scholar
  44. 44.
    P. Li, J. Hur, Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: a review. Crit. Rev. Environ. Sci. Technol. 47(3), 131–154 (2017)CrossRefGoogle Scholar
  45. 45.
    B.E. Pape, M.F. Para, M.J. Zabik, Photochemistry of bioactive compounds. Photodecomposition of 2-(1,3-dioxolan-2-yl)phenyl N-methylcarbamate. J. Agric. Food Chem. 18(3), 490–493 (1970)CrossRefGoogle Scholar
  46. 46.
    C. Chen, S. Yang, Y. Guo, C. Sun, C. Gu, B. Xu, Photolytic destruction of endocrine disruptor atrazine in aqueous solution under UV irradiation: products and pathways. J. Hazard. Mater. 172(2-3), 675–684 (2009)CrossRefGoogle Scholar
  47. 47.
    K. Parvez, Z. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Muellen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136(16), 6083–6091 (2014)CrossRefGoogle Scholar
  48. 48.
    C.A. Goss, J.C. Brumfield, E.A. Irene, R.W. Murray, Imaging the incipient electrochemical oxidation of highly oriented pyrolytic graphite. Anal. Chem. 65(10), 1378–1389 (1993)CrossRefGoogle Scholar
  49. 49.
    P. Manisankar, C. Rani, S. Viswanathan, Effect of halides in the electrochemical treatment of distillery effluent. Chemosphere 57(8), 961–966 (2004)CrossRefGoogle Scholar
  50. 50.
    B. Bielski, G.G. Shiue, S. Bajuk, Reduction of nitro blue tetrazolium by CO2- and O2- radicals. J. Phys. Chem. 84(8), 830–833 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kai Zhu
    • 1
  • Xiaoli Ren
    • 1
  • Xiuping Sun
    • 1
  • Lijing Zhu
    • 1
  • Zhirong Sun
    • 1
    Email author
  1. 1.National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse TechnologyBeijing University of TechnologyBeijingPeople’s Republic of China

Personalised recommendations