, Volume 10, Issue 5, pp 532–539 | Cite as

Ag–Co Electrocatalysts for Rechargeable Lithium–O2 Batteries: O2 Pressure and Current Density Effects

  • Josiel Martins CostaEmail author
  • Ambrósio Florêncio de Almeida Neto
Original Research


In this study, we evaluated the Ag–Co alloy as a catalyst in the Li–O2 battery electrode aiming to improve the electrochemical performance of the energy system. Ag–Co alloys were obtained by cyclic voltammetry from an electrolytic bath. The influence of O2 pressure (1.5, 2.0, and 2.5 atm) and current density (25, 50, and 75 μA cm−2) on the charge and discharge on the cell were studied. It was observed that a medium value of O2 pressure and current density was favorable to obtain a high capacity. Energy-dispersive X-ray presented that the cyclic voltammetry technique did not favor cobalt deposition. Scanning electron microscopy showed homogeneity of the deposits with the presence of cracks and small crystals. X-ray diffraction evidenced Li2O as well as the Raman spectra for nickel foam electrode. Oxygen evolution reaction was improved with Ag–Co catalyst according to linear sweep voltammetry and cyclic voltammetry analysis. Steel mesh electrode showed higher discharge capacity (336 mAh gc−1) when compared with nickel foam (115 mAh gc−1) which suggests that materials with lower cost can be used as electrodes in Li–O2 batteries.

Graphical Abstract


Storage system Electrodeposition Alloy New material 


Funding Information

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.


  1. 1.
    U.R. Farooqui, A.L. Ahmad, N.A. Hamid, Challenges and potential advantages of membranes in lithium air batteries: a review. Renew Sust Energ Rev 77, 1114–1129 (2017)CrossRefGoogle Scholar
  2. 2.
    Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem Rev 111(5), 3577–3613 (2011)CrossRefPubMedGoogle Scholar
  3. 3.
    Q. Yi, L. Song, Polyaniline-modified silver and binary silver-cobalt catalysts for oxygen reduction reaction. Electroanalysis 24(7), 1655–1663 (2012)CrossRefGoogle Scholar
  4. 4.
    K. Lee, M.S. Ahmed, S. Jeon, Electrochemical deposition of silver on manganese dioxide coated reduced graphene oxide for enhanced oxygen reduction reaction. J Power Sources 288, 261–269 (2015)CrossRefGoogle Scholar
  5. 5.
    Q. Wang, H. Yang, Z. Zhou, L. Wang, W. Yan, W. Wu, S. Chen, Z. Liu, Z. Tang, Peptide A4 based AuAg alloyed nanoparticle networks for electrocatalytic reduction of oxygen. Int J Hydrog Energy 42(16), 11295–11303 (2017)CrossRefGoogle Scholar
  6. 6.
    Y. Jin, F. Chen, Facile preparation of Ag-Cu bifunctional electrocatalysts for zinc-air batteries. Electrochim Acta 158, 437–445 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Joo, M.S. Ahmed, H.S. Han, S. Jeon, Preparation of electrochemically reduced graphene oxide-based silver-cobalt alloy nanocatalysts for efficient oxygen reduction reaction. Int J Hydrog Energy 42(34), 21751–21761 (2017)CrossRefGoogle Scholar
  8. 8.
    C. Zafferoni, G. Cioncoloni, M.L. Foresti, L. Dei, E. Carretti, F. Vizza, A. Lavacchi, M. Innocenti, Synergy of cobalt and silver microparticles electrodeposited on glassy carbon for the electrocatalysis of the oxygen reduction reaction: an electrochemical investigation. Molecules (Basel, Switzerland) 20(8), 14386–14401 (2015)CrossRefGoogle Scholar
  9. 9.
    F. Zhang, M. Wei, J. Sui, C. Jin, Y. Luo, S. Bie, R. Yang, Cobalt phosphide microsphere as an efficient bifunctional oxygen catalyst for Li-air batteries. J Alloys Compd 750, 655–658 (2018)CrossRefGoogle Scholar
  10. 10.
    Y.-B. Cho, S. Moon, C. Lee, Y. Lee, One-pot electrodeposition of cobalt flower-decorated silver nanotrees for oxygen reduction reaction. Appl Surf Sci 394, 267–274 (2017)CrossRefGoogle Scholar
  11. 11.
    H.J. Kwon, H.C. Lee, J. Ko, I.S. Jung, H.C. Lee, H. Lee, M. Kim, D.J. Lee, H. Kim, T.Y. Kim, D. Im, Effects of oxygen partial pressure on Li-air battery performance. J Power Sources 364, 280–287 (2017)CrossRefGoogle Scholar
  12. 12.
    E.J. Nemanick, R.P. Hickey, The effects of O2 pressure on Li–O2 secondary battery discharge capacity and rate capability. J Power Sources 252, 248–251 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Garcia-Torres, E. Vallés, E. Gómez, Giant magnetoresistance in electrodeposited Co–Ag granular films. Mater Lett 65(12), 1865–1867 (2011)CrossRefGoogle Scholar
  14. 14.
    F.S. Gittleson, R.C. Sekol, G. Doubek, M. Linardi, A.D. Taylor, Catalyst and electrolyte synergy in Li–O2 batteries. Phys Chem Chem Phys 16(7), 3230–3237 (2014)CrossRefPubMedGoogle Scholar
  15. 15.
    Y.-C. Lu, H.A. Gasteiger, E. Crumlin, R. McGuire, Y. Shao-Horn, Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries. J Electrochem Soc 157(9), A1016–A1025 (2010)CrossRefGoogle Scholar
  16. 16.
    J.M. Costa, T.C. de Morais Nepel, A.F. de Almeida Neto, Influence of current density and W concentration on Co-W alloys used as catalysts in electrodes for Li-O2 batteries. Chem Pap 73, 1103-1112 (2019)Google Scholar
  17. 17.
    X.-h. Yang, Y.-y. Xia, The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery. J Solid State Electrochem 14(1), 109-114 (2009)Google Scholar
  18. 18.
    N. Imanishi, O. Yamamoto, Rechargeable lithium–air batteries: characteristics and prospects. Mater Today 17(1), 24–30 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Suzuki, K. Kami, K. Watanabe, N. Imanishi, Characteristics of discharge products in all-solid-state Li-air batteries. Solid State Ionics 278, 222–227 (2015)CrossRefGoogle Scholar
  20. 20.
    P. Adelhelm, P. Hartmann, C.L. Bender, M. Busche, C. Eufinger, J. Janek, From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein j Nanotechnol 6, 1016–1055 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    J. Lu, L. Li, J.-B. Park, Y.-K. Sun, F. Wu, K. Amine, Aprotic and aqueous Li–O2 batteries. Chem Rev 114(11), 5611–5640 (2014)CrossRefPubMedGoogle Scholar
  22. 22.
    A.C. Luntz, B.D. McCloskey, Nonaqueous Li–air batteries: a status report. Chem Rev 114(23), 11721–11750 (2014)CrossRefPubMedGoogle Scholar
  23. 23.
    V. Viswanathan, K.S. Thygesen, J.S. Hummelshøj, J.K. Nørskov, G. Girishkumar, B.D. McCloskey, A.C. Luntz, Electrical conductivity in Li2Oand its role in determining capacity limitations in non-aqueous Li-O2 batteries. J Chem Phys 135(21), 214704 (2011)CrossRefPubMedGoogle Scholar
  24. 24.
    S. Nineva, T. Dobrovolska, I. Krastev, Properties of electrodeposited silver–cobalt coatings. J Appl Electrochem 41(12), 1397–1406 (2011)CrossRefGoogle Scholar
  25. 25.
    I.N. Sivagami, K. Prasanna, P. Santhoshkumar, Y.N. Jo, G.Y. Seo, C.W. Lee, Agar templated electrodeposition of binary zinc-cobalt alloy and formation of zinc-cobalt-carbon nanocomposite for application in secondary lithium batteries. J Alloys Compd 697, 450–460 (2017)CrossRefGoogle Scholar
  26. 26.
    M. Xiong, M.P. Clark, M. Labbe, D.G. Ivey, A horizontal zinc-air battery with physically decoupled oxygen evolution/reduction reaction electrodes. J Power Sources 393, 108–118 (2018)CrossRefGoogle Scholar
  27. 27.
    H. Kobayashi, M. Hibino, T. Makimoto, Y. Ogasawara, K. Yamaguchi, T. Kudo, S.-i. Okuoka, H. Ono, K. Yonehara, Y. Sumida, N. Mizuno, Synthesis of Cu-doped Li2O and its cathode properties for lithium-ion batteries based on oxide/peroxide redox reactions. J Power Sources 340, 365–372 (2017)CrossRefGoogle Scholar
  28. 28.
    Y.-C. Lu, H.A. Gasteiger, M.C. Parent, V. Chiloyan, Y. Shao-Horn, The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem Solid-State Lett 13(6), A69–A72 (2010)CrossRefGoogle Scholar
  29. 29.
    S. Dey, G.C. Dhal, D. Mohan, R. Prasad, Synthesis and characterization of AgCoO2 catalyst for oxidation of CO at a low temperature. Polyhedron 155, 102–113 (2018)CrossRefGoogle Scholar
  30. 30.
    L. Johnson, C. Li, Z. Liu, Y. Chen, S.A. Freunberger, P.C. Ashok, B.B. Praveen, K. Dholakia, J.-M. Tarascon, P.G. Bruce, The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat Chem 6(12), 1091–1099 (2014)CrossRefPubMedGoogle Scholar
  31. 31.
    F.S. Gittleson, K.P.C. Yao, D.G. Kwabi, S.Y. Sayed, W.-H. Ryu, Y. Shao-Horn, A.D. Taylor, Raman spectroscopy in lithium-oxygen battery systems. ChemElectroChem 2(10), 1446–1457 (2015)CrossRefGoogle Scholar
  32. 32.
    S. Higashi, Y. Kato, K. Takechi, H. Nakamoto, F. Mizuno, H. Nishikoori, H. Iba, T. Asaoka, Evaluation and analysis of Li-air battery using ether-functionalized ionic liquid. J Power Sources 240, 14–17 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Electrochemical Processes and Anticorrosion, Department of Products and Processes Design, School of Chemical EngineeringUniversity of CampinasCampinasBrazil

Personalised recommendations