Advertisement

Reduced Graphene Oxide-Supported Nickel(II)-Bis(1,10-Phenanthroline) Complex as a Highly Active Electrocatalyst for Ethanol Oxidation Reaction

  • José R. N. Santos
  • Deracilde S. S. Viégas
  • Ismael Carlos B. Alves
  • Alex D. Rabelo
  • Wendell M. Costa
  • Edmar P. Marques
  • Lei Zhang
  • Jiujun Zhang
  • Aldaléa L. B. MarquesEmail author
Original Research

Abstract

The reduced graphene oxide (rGO) is used to support nickel(II)-bis(1,10-phenanthroline) complex (Ni(II)(Phen)2), forming a catalyst Ni(II)(Phen)2/rGO for ethanol oxidation reaction (EOR). A pyrolytic graphite electrode modified by this catalyst shows excellent electrocatalytic EOR activity, characterized by physical and electrochemical methods. The electrocatalytic activity of the material was evaluated by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy (EIS). The significant increase in EOR currents compared to the electrode modified with only (Ni(II)(Phen)2 complex demonstrates the promotion role of the rGO. It is believed that the interaction between Ni(II)(Phen)2 and rGO to create a synergistic effect of Ni(II)(Phen)2/rGO catalyst should be responsible for the observed enhancement of the catalytic EOR performance. Using the Laviron theory, the charge transfer rate constant (ks) and the electron transfer coefficient (α) of the electrode reaction are calculated to be 0.60 s−1 and 0.61, respectively. Both the effects of OH and ethanol concentration on the catalyst EOR activity are also studied to obtain the diffusion coefficient of ethanol (D = 4.7 × 10−6 cm2 s−1) and the catalytic rate constant (kcat = 1.26 × 107 cm3 mol−1 s−1). Based on the experimental results, an EOR mechanism catalyzed by Ni(II)(Phen)2/rGO is proposed. The catalytic EOR peak currents exhibit a linear growth (behavior) with increasing ethanol concentration, suggesting the possible use of this catalyst material as a sensor for ethanol analysis. In addition, the obtained chronoamperometric curves confirm the stability of the catalyst. It is believed that this Ni(II)(Phen)2/rGO catalyst is a promising cost-effective alternative for ethanol oxidation reaction in direct ethanol fuel cells.

Graphical Abstract

Electrocatalytical oxidation of ethanol catalyzed by a rGO-supported Ni(II)(Phen)2 catalyst-modified pyrolytic graphite electrode

Keywords

Ethanol oxidation Nickel-phenanthroline complex Electrocatalysis Reduced graphene oxide Direct ethanol fuel cell 

Notes

Acknowledgments

The authors are grateful to CNPq (PQ 2017, Proc. 310664/2017-9), FINEP (Research Project RECOL 05/Subproject NANOPET), ANP (Research Project PMQC/BIOPETRO, No. 1.029/2016-ANP-007.639), and CAPES for the financial support and fellowships received.

References

  1. 1.
    G. Nicoletti, N. Arcuri, G. Nicoletti, R. Bruno, A technical and environmental comparison between hydrogen and some fossil fuels. Energy Convers. Manag. 89, 205–213 (2015)CrossRefGoogle Scholar
  2. 2.
    S.P.S. Badwal, S. Giddey, A. Kulkarni, J. Goel, S. Basu, Direct ethanol fuel cells for transport and stationary applications—a comprehensive review. Appl. Energy 145, 80–103 (2015)CrossRefGoogle Scholar
  3. 3.
    N. Tian, B.A. Lu, X.D. Yang, R. Huang, Y.X. Jiang, Z.Y. Zhou, S.G. Sun, Rational design and synthesis of low-temperature fuel cell electrocatalysts. Electrochem. Energy Rev. 1(1), 54–83 (2018)CrossRefGoogle Scholar
  4. 4.
    R. Wang, H. Wang, F. Luo, S. Liao, Core–shell-structured low-platinum electrocatalysts for fuel cell applications. Electrochem. Energy Rev. 1(3), 324–387 (2018)CrossRefGoogle Scholar
  5. 5.
    M.A.F. Akhairi, S.K. Kamarudin, Catalysts in direct ethanol fuel cell (DEFC): an overview. Int. J. Hydrog. Energy 41(7), 4214–4228 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Sayadi, P.G. Pickup, Evaluation of ethanol oxidation catalysts by rotating disc voltammetry. Electrochim. Acta 215, 84–92 (2016)CrossRefGoogle Scholar
  7. 7.
    A.B. Soliman, H.S. Abdel-Samad, S.S.A. Rehim, M.A. Ahmed, H.H. Hassan, High performance nano-Ni/graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells. J. Power Sources 325, 653–663 (2016)CrossRefGoogle Scholar
  8. 8.
    J.L. Tan, A.M. De Jesus, S.L. Chua, J. Sanetuntikul, S. Shanmugam, B.J.V. Tongol, H. Kim, Preparation and characterization of palladium-nickel on graphene oxide support as anode catalyst for alkaline direct ethanol fuel cell. Appl. Catal. A Gen. 531, 29–35 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Sedighi, A.A. Rostami, E. Alizadeh, Enhanced electro-oxidation of ethanol using Pt–CeO2 electrocatalyst prepared by electrodeposition technique. Int. J. Hydrog. Energy 42(8), 4998–5005 (2017)CrossRefGoogle Scholar
  10. 10.
    R. Rizo, D. Sebastián, M.J. Lázaro, E. Pastor, On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media. Appl. Catal. B Environ. 200, 246–254 (2017)CrossRefGoogle Scholar
  11. 11.
    R.M. Antoniassi, L. Otubo, J.M. Vaz, A.O. Neto, E.V. Spinacé, Synthesis of Pt nanoparticles with preferential (1 0 0) orientation directly on the carbon support for direct ethanol fuel cell. J. Catal. 342, 67–74 (2016)CrossRefGoogle Scholar
  12. 12.
    W.M. Costa, W.S. Cardoso, E.P. Marques, C.W. Bezerra, A.A.P. Ferreira, C. Song, J. Zhang, A.L. Marques, Electrochemical behavior of ruthenium-hexacyanoferrate modified glassy carbon electrode and catalytic activity towards ethanol electrooxidation. J. Braz. Chem. Soc. 24, 651–656 (2013)CrossRefGoogle Scholar
  13. 13.
    C. Hu, Y. Xiao, Y. Zou, L. Dai, Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection. Electrochem. Energy Rev. 1(1), 84–112 (2018)CrossRefGoogle Scholar
  14. 14.
    W.S. Cardoso, V.L. Dias, W.M. Costa, I. de Araujo Rodrigues, E.P. Marques, A.G. Sousa, J. Boaventura, C.W.B. Bezerra, C. Song, H. Liu, J. Zhang, A.L.B. Marques, Nickel-dimethylglyoxime complex modified graphite and carbon paste electrodes: preparation and catalytic activity towards methanol/ethanol oxidation. J. Appl. Electrochem. 39(1), 55–64 (2009)CrossRefGoogle Scholar
  15. 15.
    S.K. Hassaninejad-Darzi, M. Gholami-Esfidvajani, Electrocatalytic oxidation of ethanol using modified nickel phosphate nanoparticles and multi-walled carbon nanotubes paste electrode in alkaline media for fuel cell. Int. J. Hydrog. Energy 41(44), 20085–20099 (2016)CrossRefGoogle Scholar
  16. 16.
    J.W. Kim, S.M. Park, Electrochemical oxidation of ethanol at nickel hydroxide electrodes in alkaline media studied by electrochemical impedance spectroscopy. J. Korean Electrochem. Soc. 8(3), 117–124 (2005)CrossRefGoogle Scholar
  17. 17.
    M.R.D. Silva, A.C.D. Ângelo, L.H. Dall'Antonia, Carbon supported nickel hydroxide: a low cost catalyst for alcohol electro-oxidation in alkaline medium. Quím Nova 33(10), 2027–2031 (2010)CrossRefGoogle Scholar
  18. 18.
    M.A. Ghanem, A.M. Al-Mayouf, J.P. Singh, T. Abiti, F. Marken, Mesoporous nickel/nickel hydroxide catalyst using liquid crystal template for ethanol oxidation in alkaline solution. J. Electrochem. Soc. 162(7), H453–H459 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Fleischmann, K. Korinek, D. Pletcher, The oxidation of organic compounds at a nickel anode in alkaline solution. J. Electroanal. Chem. Interfacial Electrochem. 31(1), 39–49 (1971)CrossRefGoogle Scholar
  20. 20.
    A.N. Golikand, M. Asgari, M.G. Maragheh, S. Shahrokhian, Methanol electrooxidation on a nickel electrode modified by nickel–dimethylglyoxime complex formed by electrochemical synthesis. J. Electroanal. Chem. 588(1), 155–160 (2006)CrossRefGoogle Scholar
  21. 21.
    Z. Mousavi, A. Benvidi, S. Jahanbani, M. Mazloum-Ardakani, R. Vafazadeh, H.R. Zare, Investigation of electrochemical oxidation of methanol at a carbon paste electrode modified with Ni(II)-BS complex and reduced graphene oxide nano sheets. Electroanalysis 28(12), 2985–2992 (2016)CrossRefGoogle Scholar
  22. 22.
    A. Ciszewski, I. Stepniak, Preparation, characterization and redox reactivity of glassy carbon electrode modified with organometallic complex of nickel. Electrochim. Acta 76, 462–467 (2012)CrossRefGoogle Scholar
  23. 23.
    A. Bencini, V. Lippolis, 1,10-Phenanthroline: a versatile building block for the construction of ligands for various purposes. Coord. Chem. Rev. 254(17-18), 2096–2180 (2010)CrossRefGoogle Scholar
  24. 24.
    J.H. Bi, H.Z. Dong, Hydrothermal synthesis and structure of 1,10-phenanthroline nickel(II) complex. Asian J. Chem. 27(4), 1559–1560 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Yan, X. Li, Y. Xiong, M. Wang, L. Yang, X. Liu, X. Li, L.A.M. Alshahrani, P. Liu, C. Zhang, Simultaneous determination of ascorbic acid, dopamine and uric acid using a glassy carbon electrode modified with the nickel(II)-bis(1,10-phenanthroline) complex and single-walled carbon nanotubes. Microchim. Acta 183(4), 1401–1408 (2016)CrossRefGoogle Scholar
  26. 26.
    C. Ren, H. Li, R. Li, S. Xu, D. Wei, W. Kang, L. Wang, L. Jia, B. Yang, J. Liu, Electrocatalytic study of a 1,10-phenanthroline–cobalt(II) metal complex catalyst supported on reduced graphene oxide towards oxygen reduction reaction. RSC Adv. 6(40), 33302–33307 (2016)CrossRefGoogle Scholar
  27. 27.
    W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)CrossRefGoogle Scholar
  28. 28.
    M. Roteta, R. Fernández-Martínez, M. Mejuto, I. Rucandio, Preparation of graphene thin films for radioactive samples. Appl. Radiat. Isot. 109, 217–221 (2016)CrossRefGoogle Scholar
  29. 29.
    Y. Yulizar, N. Wahyuningsih, N.D. Asri, H. Watarai, Investigation on the synergistic complexation of Ni(II) with 1,10-phenanthroline and dithizone at hexane-water interface using centrifugal liquid membrane-spectrophotometry. Makara J. Sci. 16, 169–177 (2013)Google Scholar
  30. 30.
    J. Shen, T. Li, Y. Long, M. Shi, N. Li, M. Ye, One-step solid state preparation of reduced graphene oxide. Carbon 50(6), 2134–2140 (2012)CrossRefGoogle Scholar
  31. 31.
    W. Li, Y.J. Yang, The reduction of graphene oxide by elemental copper and its application in the fabrication of graphene supercapacitor. J. Solid State Electrochem. 18(6), 1621–1626 (2014)CrossRefGoogle Scholar
  32. 32.
    K. Satheesh, R. Jayavel, Synthesis and electrochemical properties of reduced graphene oxide via chemical reduction using thiourea as a reducing agent. Mater. Lett. 113, 5–8 (2013)CrossRefGoogle Scholar
  33. 33.
    T.J. Prior, A. Rujiwatra, Y. Chimupala, [Ni(1,10-phenanthroline)2(H2O)2](NO3)2: a simple coordination complex with a remarkably complicated structure that simplifies on heating. Crystals 1(3), 178–194 (2011)CrossRefGoogle Scholar
  34. 34.
    X. Wang, G. Jia, Y. Yu, Y. Gao, W. Zhang, H. Wang, J. Liu, A new homogeneous electrocatalyst for electrochemical carbonylation of methanol to dimethyl carbonate. Quím Nova 38, 298–302 (2015)Google Scholar
  35. 35.
    L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 195, 145–154 (2014)CrossRefGoogle Scholar
  36. 36.
    H. Ham, T. Van Khai, N.H. Park, D.S. So, J.W. Lee, H.G. Na, Y.J. Kwon, H.Y. Cho, H.W. Kim, Freeze-drying-induced changes in the properties of graphene oxides. Nanotechnology 25(23), 235601 (2014)CrossRefGoogle Scholar
  37. 37.
    B.E. Warren, X-ray diffraction in random layer lattices. Phys. Rev. 59(9), 693–698 (1941)CrossRefGoogle Scholar
  38. 38.
    M. Aleksandrzak, W. Kukulka, E. Mijowska, Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis. Appl. Surf. Sci. 398, 56–62 (2017)CrossRefGoogle Scholar
  39. 39.
    S.M. Golabi, A. Nozad, Electrocatalytic oxidation of methanol on a nickel-porphyrin IX complex modified glassy carbon electrode in alkaline medium. Electroanalysis 16(3), 199–209 (2004)CrossRefGoogle Scholar
  40. 40.
    K. De Doncker, R. Dumarey, R. Dams, J. Hoste, The use of 1,10-phenanthroline in minimizing the nickel interference in determinations of bismuth and antimony by hydride generation/atomic absorption spectrometry. Anal. Chim. Acta 169, 339–341 (1985)CrossRefGoogle Scholar
  41. 41.
    L. Zheng, J.F. Song, Nickel(II)–baicalein complex modified multiwall carbon nanotube paste electrode and its electrocatalytic oxidation toward glycine. Anal. Biochem. 391(1), 56–63 (2009)CrossRefGoogle Scholar
  42. 42.
    E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 101(1), 19–28 (1979)CrossRefGoogle Scholar
  43. 43.
    C.C. Mccrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135(45), 16977–16987 (2013)CrossRefGoogle Scholar
  44. 44.
    S. Trasatti, O.A. Petrii, Real surface area measurements in electrochemistry. Pure Appl. Chem. 63(5), 711–734 (1991)CrossRefGoogle Scholar
  45. 45.
    M. Jafarian, F. Gobal, S. Rayati, M.G. Mahjani, Electrocatalytic oxidation of 1-propanol and 2-propanol on electro-active films derived from NiII-(N,N′-bis(2-hydroxy, 3-methoxy benzaldehyde)-1,2-propandiimine) modified glassy carbon electrode. Electrocatalysis 2(3), 163–171 (2011)CrossRefGoogle Scholar
  46. 46.
    R. Kötz, E. Yeager, Raman spectroscopy of cobalt phthalocyanine adsorbed on a silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 113(1), 113–125 (1980)CrossRefGoogle Scholar
  47. 47.
    A.F.B. Barbosa, V.L. Oliveira, J. Van Drunen, G. Tremiliosi-Filho, Ethanol electro-oxidation reaction using a polycrystalline nickel electrode in alkaline media: temperature influence and reaction mechanism. J. Electroanal. Chem. 746, 31–38 (2015)CrossRefGoogle Scholar
  48. 48.
    H.B. Hassan, Z.A. Hamid, Electrodeposited Ni–Cr2O3 nanocomposite anodes for ethanol electrooxidation. Int. J. Hydrog. Energy 36(8), 5117–5127 (2011)CrossRefGoogle Scholar
  49. 49.
    S.J. Zhang, Y.X. Zheng, L.S. Yuan, L.H. Zhao, Ni–B amorphous alloy nanoparticles modified nanoporous Cu toward ethanol oxidation in alkaline medium. J. Power Sources 247, 428–436 (2014)CrossRefGoogle Scholar
  50. 50.
    H.B. Hassan, R.H. Tammam, Preparation of Ni-metal oxide nanocomposites and their role in enhancing the electro-catalytic activity towards methanol and ethanol. Solid State Ionics 320, 325–338 (2018)CrossRefGoogle Scholar
  51. 51.
    Z. Deng, Q. Yi, Y. Zhang, H. Nie, NiCo/CN/CNT composite catalysts for electro-catalytic oxidation of methanol and ethanol. J. Electroanal. Chem. 803, 95–103 (2017)CrossRefGoogle Scholar
  52. 52.
    A. J. Bard, L. R. Faulkner, J. Leddy, C. G. Zoski. Electrochemical methods: fundamentals and applications. Wiley: New York, 2, (1980)Google Scholar
  53. 53.
    A. Ehsani, M.G. Mahjani, M. Jafarian, A. Naeemy, Electrosynthesis of polypyrrole composite film and electrocatalytic oxidation of ethanol. Electrochim. Acta 71, 128–133 (2012)CrossRefGoogle Scholar
  54. 54.
    G. Karim-Nezhad, S. Pashazadeh, A. Pashazadeh, Electrocatalytic oxidation of methanol and ethanol by carbon ceramic electrode modified with Ni/Al LDH nanoparticles. Chin. J. Catal. 33(11-12), 1809–1816 (2012)CrossRefGoogle Scholar
  55. 55.
    J. Zhan, M. Cai, C. Zhang, C. Wang, Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media. Electrochim. Acta 154, 70–76 (2015)CrossRefGoogle Scholar
  56. 56.
    W. Shi, Q. Wang, F. Qin, J. Yu, M. Jia, H. Gao, Y. Zhang, Y. Zhao, G. Li, N-doped carbon encapsulated nickel nanoparticles: rational fabrication and ultra-high performance for ethanol oxidation. Electrochim. Acta 232, 332–338 (2017)CrossRefGoogle Scholar
  57. 57.
    M. Jafarian, A. Mirzapoor, I. Danaee, S.A.A. Shahnazi, F. Gobal, A comparative study of the electrooxidation of C1 to C3 aliphatic alcohols on Ni modified graphite electrode. SCIENCE CHINA Chem. 55(9), 1819–1824 (2012)CrossRefGoogle Scholar
  58. 58.
    J.B. Raoof, A. Omrani, R. Ojani, F. Monfared, Fabrication and performance evaluation of carbon paste–poly(N-methylaniline)–nickel composite electrode toward electrocatalytic oxidation of ethanol. J. Macromol. Sci. A 50(5), 541–546 (2013)CrossRefGoogle Scholar
  59. 59.
    M. Abrishamkar, A. Izadi, Nano-ZSM-5 zeolite: synthesis and application to electrocatalytic oxidation of ethanol. Microporous Mesoporous Mater. 180, 56–60 (2013)CrossRefGoogle Scholar
  60. 60.
    M. Rahimnejad, S.K. Hassaninejad-Darzi, S.M. Pourali, Preparation of template-free sodalite nanozeolite–chitosan-modified carbon paste electrode for electrocatalytic oxidation of ethanol. J. Iran. Chem. Soc. 12(3), 413–425 (2015)CrossRefGoogle Scholar
  61. 61.
    M. Jafarian, M. Babaee, F. Gobal, M.G. Mahjani, Electro-oxidation of alcohols on nickel dispersed in poly-o-aminophenol modified graphite electrode. J. Electroanal. Chem. 652(1-2), 8–12 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • José R. N. Santos
    • 1
  • Deracilde S. S. Viégas
    • 1
  • Ismael Carlos B. Alves
    • 1
  • Alex D. Rabelo
    • 1
  • Wendell M. Costa
    • 1
  • Edmar P. Marques
    • 2
  • Lei Zhang
    • 1
    • 3
    • 4
  • Jiujun Zhang
    • 1
    • 3
  • Aldaléa L. B. Marques
    • 1
    Email author
  1. 1.Department of Chemical Technology (NEPE: LPQA & LAPQAP)Federal University of Maranhão (UFMA)São LuisBrazil
  2. 2.Department of ChemistryFederal University of Maranhão (UFMA)São LuisBrazil
  3. 3.Institute for Sustainable Energy/College of SciencesShanghai UniversityShanghaiChina
  4. 4.Energy, Mining & EnvironmentNational Research Council of CanadaVancouverCanada

Personalised recommendations