Advertisement

Electrocatalysis

, Volume 10, Issue 4, pp 445–458 | Cite as

Inhibition of Aluminium Corrosion Using Benzothiazole and Its Phthalocyanine Derivative

  • Nnaemeka Nnaji
  • Njemuwa Nwaji
  • Gertrude Fomo
  • John Mack
  • Tebello NyokongEmail author
Original Research

Abstract

Cyclic voltammetry and potentiodynamic polarization techniques were used to study the effects of 4-[4-(1,3-benzothiazol-2yl)phenoxy] phthalonitrile (BT) and tetrakis[(benzo[d]thiazol-2ylphenoxy) phthalocyaninato] gallium(III)chloride (ClGaBTPc) as aluminium corrosion inhibitors in 1.0 M hydrochloric acid. The presence of the inhibitors in the concentration range of 2 to 10 μM was found to retard the aluminium corrosion process such that the inhibition efficiency was found to range from 28.2 to 76.1% for BT and from 71.5 to 82.7% for ClGaBTPc. The latter was a better inhibitor. Scanning electron microscopy and energy-dispersive X-ray measurements reveal effective metal surface protection by the inhibitors, most probably by shielding it from the corrosion attacks of Cl from the acid. The calculated quantum chemical parameters agreed with experimental results.

Graphical Abstract

Adsorption of benzothiazole phthalocyanine onto the metal surface for the protection of the metal from the aggressive attack of Cl.

Keywords

Aluminium Benzothiazole Corrosion inhibition Cyclic voltammetry Potentiodynamic polarization 

Notes

Acknowledgements

This work was supported by the Department of Science and Technology (DST) and National Research Foundation (NRF), South Africa, through the DST/NRF South African Research Chairs Initiative for Professor of Medicinal Chemistry and Nanotechnology (UID 62620) as well as the Rhodes University/DST Centre for Nanotechnology Innovation, South Africa.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12678_2019_538_MOESM1_ESM.docx (2.2 mb)
ESM 1 (DOCX 2246 kb)

References

  1. 1.
    P. Deepa, R. Padmalatha, Corrosion behaviour of 6063 aluminium alloy in acidic and in alkaline media. Arab. J. Chem. 10, S2234–S2244 (2017)CrossRefGoogle Scholar
  2. 2.
    A.K. Mishra, R. Balasubramanian, Corrosion inhibition of aluminum alloy AA 2014 by rare earth chlorides. Corros. Sci. 49(3), 1027–1044 (2007)CrossRefGoogle Scholar
  3. 3.
    S.G. Aziz, A.A. El-Awady, B.A. Abd-El-Nabey, Studies on the kinetics of aluminium metal dissolution in aggressive media containing inorganic anions. J. King Abdulaziz Univ. (SAU) Sci. 9(1), 101–115 (1997)CrossRefGoogle Scholar
  4. 4.
    L.T. Popoola, A.S. Grema, G.K. Latinwo, B. Gutti, A.S. Balogun, Corrosion problems during oil and gas production and its mitigation. Int. J. Ind. Chem. 4(35), 35 (2013).  https://doi.org/10.1186/2228-5547-4-35 CrossRefGoogle Scholar
  5. 5.
    J.W.J. Silva, E.N. Codaro, R.Z. Nakazato, L.R.O. Hein, Influence of chromate, molybdate and tungstate on pit formation in chloride medium. Appl. Surf. Sci. 252(4), 1117–1122 (2005)CrossRefGoogle Scholar
  6. 6.
    K. Xhanari, M. Finšgar, M.K. Hrnčič, U. Maver, Z. Knez, B. Seiti, Green corrosion inhibitors for aluminium and its alloys: a review. RSC Adv. 7(44), 27299–27330 (2017)CrossRefGoogle Scholar
  7. 7.
    S.A.M. Refaey, S.S.A. El-Rehim, F. Taha, M.B. Saleh, R.A. Ahmed, Inhibition of chloride localized corrosion of mild steel by \( P{O}_4^{3-} \), \( Cr{O}_4^{2-} \), \( Mo{O}_4^{2-} \) and \( N{O}_2^{-} \) anions. Appl. Surf. Sci. 158(3–4), 190–196 (2000)CrossRefGoogle Scholar
  8. 8.
    A. Aballe, M. Bethencourt, F.J. Botana, M. Marcos, CeCl and LaCl binary solutions as environment-friendly corrosion inhibitors of AA5083 Al–Mg alloy in NaCl solutions. J. Alloys Compd. 323-324, 855–858 (2001)CrossRefGoogle Scholar
  9. 9.
    D. Eaves, G. Williams, H.N. McMurray, Inhibition of self-corrosion in magnesium by poisoning hydrogen recombination on iron impurities. Electrochim. Acta 79, 1–7 (2012)CrossRefGoogle Scholar
  10. 10.
    M. Iannuzzi, G.S. Frankel, Mechanisms of corrosion inhibition of AA2024-T3 by vanadates. Corros. Sci. 49(5), 2371–2391 (2007)CrossRefGoogle Scholar
  11. 11.
    N.J.N. Nnaji, O.T. Ujam, N.E. Ibisi, J.U. Ani, T.O. Onuegbu, L.O. Olasunkanmi, E.E. Ebenso, Morpholine and piperazine based carboxamide derivatives as corrosion inhibitors of mild steel in HCl medium. J. Mol. Liq. 230, 652–661 (2017)CrossRefGoogle Scholar
  12. 12.
    I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, Adsorption characteristics and corrosion inhibitive properties of clotrimazole for aluminium corrosion in hydrochloric acid. Int. J. Electrochem. Sci. 4, 863–877 (2009)Google Scholar
  13. 13.
    S.A. Abd El-Maksoud, The effect of organic compounds on the electrochemical behaviour of steel in acidic media. A review. Int. J. Electrochem. Sci. 3, 528–555 (2008)Google Scholar
  14. 14.
    S.A. Umoren, U.M. Eduok, Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review. Carbohydr. Polym. 140, 314–341 (2016)PubMedCrossRefGoogle Scholar
  15. 15.
    N.J. Nnaji, N.O. Obi-Egbedi, M.A. Nnabugwu, Kinetics and thermodynamics of aluminium corrosion by solution in the presence of Anthocleista djalonensis leaf extract. Int. J. Chem. Sci. 10(1), 182–194 (2012)Google Scholar
  16. 16.
    M. Dibetsoe, L.O. Olasunkanmi, O.E. Fayemi, S. Yesudass, B. Ramaganthan, I. Bahadur, A.S. Adekunle, M.M. Kabanda, E.E. Ebenso, Some phthalocyanine and naphthalocyanine derivatives as corrosion inhibitors for aluminium in acidic medium: experimental, quantum chemical calculations, qsar studies and synergistic effect of iodide ions. Molecules 20(9), 15701–15734 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    O.K. Özdemir, A. Aytaç, D. Atilla, M. Durmuş, Corrosion inhibition of aluminum by novel phthalocyanines in hydrochloric acid solution. J. Mater. Sci. 46(3), 752–758 (2011)CrossRefGoogle Scholar
  18. 18.
    A. Aktaş, M. Durmuş, L. Değrmencioğlu, Self-assembling novel phthalocyanines containing a rigid benzothiazole skeleton with a 1,4-benzene linker: synthesis, spectroscopic and spectral properties, and photochemical/photophysical affinity. Polyhedron 48(1), 80–91 (2012)CrossRefGoogle Scholar
  19. 19.
    N. Nwaji, O.M. Bankole, J. Britton, T. Nyokong, Photophysical and nonlinear optical study of benzothiazole substituted phthalocyanines in solution and thin films. J. Porphyrins Phthalocyanines 21(4–6), 263–272 (2017)CrossRefGoogle Scholar
  20. 20.
    S.S.A. El-Rehim, S.A.M. Refaey, F. Taha, M.B. Saleh, R.A. Ahmed, Corrosion inhibition of mild steel in acidic medium using 2-amino thiophenol and 2-cyanomethyl benzothiazole. J. Appl. Electrochem. 31(4), 429–435 (2001)CrossRefGoogle Scholar
  21. 21.
    M. Yadav, S. Kumar, N. Kumari, I. Bahadur, E.E. Ebenso, Experimental and theoretical studies on corrosion inhibition effect of synthesized benzothiazole derivatives on mild steel in 15% HCl solution. Int. J. Electrochem. Sci. 10, 602–624 (2015)Google Scholar
  22. 22.
    A.S. Fouda, M. Diab, A. El-Sonbati, S.A. Hassan, Benzothiazole derivatives as corrosion inhibitors for carbon steel in 1 M phosphoric acid (H3PO4) solutions. Afr. J. Pure Appl. Chem. 7(2), 67–78 (2013)Google Scholar
  23. 23.
    Z. Salarvand, M. Amirnasr, M. Talebian, K. Raeissi, S. Meghdadia, Enhanced corrosion resistance of mild steel in 1 M HCl solution by trace amount of 2-phenyl-benzothiazole derivatives: experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies. Corros. Sci. 114, 133–145 (2017)CrossRefGoogle Scholar
  24. 24.
    Z. Hu, Y. Meng, X. Ma, H. Zhu, J. Li, C. Li, D. Cao, Experimental and theoretical studies of benzothiazole derivatives as corrosion inhibitors for carbon steel in 1 M HCl. Corros. Sci. 112, 563–575 (2016)CrossRefGoogle Scholar
  25. 25.
    I.V. Aoki, I.G. Guedes, S.L. Maranhao, Copper phthalocyanine as corrosion inhibitor for ASTM A606-4 steel in 16% hydrochloric acid. J. Appl. Electrochem. 32(8), 915–919 (2002)CrossRefGoogle Scholar
  26. 26.
    P. Zhao, Q. Liang, Y. Li, Electrochemical, SEM/EDS and quantum chemical study of phthalocyanines as corrosion inhibitors for mild steel in 1 mol/L HCl. Appl. Surf. Sci. 252(5), 1596–1607 (2005)CrossRefGoogle Scholar
  27. 27.
    J.P. Chen, X.S. Zhang, Phosphorous phthalocyanine analogues as degradable corrosion inhibitor of mild steel in 1 mol/L HCl. Trans. Indian Inst. Metals 71(5), 1113–1126 (2018)CrossRefGoogle Scholar
  28. 28.
    E. Sezer, B. Ustamehmetoglu, Z.A. Bayır, K. Coban, A. Kalkan, Corrosion inhibition effect of 4-(2-diethylamino-ethylsulfonyl)-phthalonitrile and 4,5-bis(hexylsulfonyl)-phthalonitrile. Int. J. Electrochem 2011, Article ID 235360, 5 pages (2011)Google Scholar
  29. 29.
    S. Ghareba, S. Omanovic, The effect of electrolyte flow on the performance of 12-aminododecanoic acid as a carbon steel corrosion inhibitor in CO2-saturated hydrochloric acid. Corros. Sci. 53(11), 3805–3812 (2011)CrossRefGoogle Scholar
  30. 30.
    S. Ghareba, S. Omanovic, 12-Aminododecanoic acid as a corrosion inhibitor for carbon steel. Electrochim. Acta 56(11), 3890–3898 (2011)CrossRefGoogle Scholar
  31. 31.
    Z. Shirazi, M.H. Keshavarz, K. Esmaeilpour, T. Pakniya, A novel and simple method for the prediction of corrosion inhibition efficiency without using complex computer codes. Z. Anorg. Allg. Chem. 643(24), 2149–2157 (2017)CrossRefGoogle Scholar
  32. 32.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, G. Cheeseman, J.R. Scalmani, V. Barone, B. Mennucci, H. Petersson, G.A. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, K. Hada, M. Ehara, M. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.E. Montgomery, J.A. Peralta Jr., F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, R. Staroverov, V.N. Kobayashi, K. Normand, J. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, S. Dannenberg, J.J. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision E. 01, Gaussian Inc, Wallingford CT, 2009.Google Scholar
  33. 33.
    B. Xu, W. Yang, Y. Liu, X. Yin, W. Gong, Y. Chen, Experimental and theoretical evaluation of two pyridinecarboxaldehyde thiosemicarbazone compounds as corrosion inhibitors for mild steel in hydrochloric acid solution. Corros. Sci. 78, 260–268 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Yan, W. Li, L. Cai, B. Hau, Electrochemical and quantum chemical study of purines as corrosion inhibitors for mild steel in 1 M HCl solution. Electrochim. Acta 53(20), 5953–5960 (2008)CrossRefGoogle Scholar
  35. 35.
    M.E. Mashuga, L.O. Olasunkanmi, A.S. Adekunle, S. Yesudass, M.M. Kabanda, E.E. Ebenso, Adsorption, thermodynamics and quantum chemical studies of 1-hexyl-3-methylimidazolium based ionic liquids as corrosion inhibitors for mild steel in HCl. Materials 8(6), 3607–3632 (2015)PubMedCentralCrossRefGoogle Scholar
  36. 36.
    M. Abdallah, B.H. Asghar, I. Zaafarany, A.S. Fouda, The inhibition of carbon steel corrosion in hydrochloric acid solution using some phenolic compounds. Int. J. Electrochem. Sci. 7, 282–304 (2012)Google Scholar
  37. 37.
    Z. Pilic, I. Martinovic, Y. Yan, W. Li, L. Cai, B. Hau, A comparative study on the electrochemical behaviour of aluminium and 8090 Al- Li-Cu-Mg alloy in acid rain solution. Int. J. Electrochem. Sci. 12, 3576–3588 (2017)CrossRefGoogle Scholar
  38. 38.
    N.J.N. Nnaji, C.O.B. Okoye, N.O. Obi-Egbedi, M.A. Ezeokonkwo, J.U. Ani, Spectroscopic characterization of red onion skin tannin and it’s use as alternative aluminium corrosion inhibitor in hydrochloric acid solutions. Int. J. Electrochem. Sci. 8, 1735–1758 (2013)Google Scholar
  39. 39.
    N.J.N. Nnaji, N.O. Obi-Egbedi, C.O.B. Okoye, Cashew nut testa tannin: assessing its effects on the corrosion of aluminium in HCl. Port. Electrochim. Acta 32(2), 157–182 (2014)CrossRefGoogle Scholar
  40. 40.
    K. Leetmaa, M.A. Gomez, L. Becze, F. Guo, G.P. Demopoulos, Comparative molecular characterization of aluminum hydroxy-gels derived from chloride and sulphate salts. J. Chem. Technol. Biotechnol. 89(2), 206–213 (2014)CrossRefGoogle Scholar
  41. 41.
    A. Handy, N.S. El-Gendy, Thermodynamic, adsorption and electrochemical studies for corrosion inhibition of carbon steel by henna extract in acid medium. Egypt. J. Pet. 22(1), 17–25 (2013)CrossRefGoogle Scholar
  42. 42.
    K.A. Rodgers, M.R. Gregory, R. Barton, Bayerite, Nordstrandite, Gibbsite, Brucite, and Pseudoboehmite in discharged caustic waste from Campbell Island, Southwest Pacific. Clay. Clay Miner. 39(1), 103–107 (1991)CrossRefGoogle Scholar
  43. 43.
    T. Kozawa, M. Naito, Mechanically induced formation of metastable χ- and κ-Al2O3 from boehmite. Adv. Powder Technol. 27(3), 935–939 (2016)CrossRefGoogle Scholar
  44. 44.
    A.W. Snow, J.R. Griffith, N.P. Marullo, Syntheses and characterization of heteroatom-bridged metal free phthalocyanine network polymers and model compounds. Macromolecules 17(8), 1614–1624 (1984)CrossRefGoogle Scholar
  45. 45.
    K. Görgün, H.C. Sakarya, M. Özkütük, The synthesis, characterization, acid dissociation, and theoretical calculation of several novel benzothiazole schiff base derivatives. J. Chem. Eng. Data 60(3), 594–601 (2015)CrossRefGoogle Scholar
  46. 46.
    R.T. Wheelhouse, D.F. Shi, D.E.V. Wilman, M.F.G. Stevens, Antitumour benzothiazoles. Part 4. An NMR study of the sites of protonation of 2-(4-aminophenyl)benzothiazoles. J. Chem. Soc., Perkin Trans. 2(7), 1271–1274 (1996)Google Scholar
  47. 47.
    Y.H. So, J.M. Zaleski, C. Murlick, A. Ellaboudy, Synthesis and photophysical properties of some benzoxazole and benzothiazole compounds. Macromolecules 29(8), 2783–2795 (1996)CrossRefGoogle Scholar
  48. 48.
    P.A. Bernstein, A.B.P. Lever, Protonation of cobalt tetraneopentoxyphthalocyanine as a function of oxidation state. Inorg. Chim. Acta 198-200, 543–555 (1992)CrossRefGoogle Scholar
  49. 49.
    I.M. Lipatova, A.A. Yusova, E.A. Lukyanets, Supramolecular complexation of the cationic derivative of Zn (II) phthalocyanine and sodium alginate in mixed aqueous solutions. J. Photochem. Photobiol. A Chem. 364, 588–594 (2018)CrossRefGoogle Scholar
  50. 50.
    H. Gerengi, M. Mielniczek, G. Gece, M.M. Solomon, Experimental and quantum chemical evaluation of 8-hydroxyquinoline as a corrosion inhibitor for copper in 0.1 M HCl. Ind. Eng. Chem. Res. 55(36), 9614–9624 (2016)CrossRefGoogle Scholar
  51. 51.
    J. Haque, C. Verma, V. Srivastava, M.A. Quraishi, E.E. Ebenso, Experimental and quantum chemical studies of functionalized tetrahydropyridines as corrosion inhibitors for mild steel in 1M hydrochloric acid. Results Phys. 9, 1481–1493 (2018)CrossRefGoogle Scholar
  52. 52.
    J.O. Bockris, D.A.J. Swinkels, Adsorption of naphthalene on solid metal electrodes. J. Electrochem. Soc. 111(6), 743–748 (1964)CrossRefGoogle Scholar
  53. 53.
    N.O. Obi-Egbedi, I.B. Obot, Xanthione: a new and effective corrosion inhibitor for mild stell in sulphuric acid solution. Arab. J. Chem. 6(2), 211–223 (2013)CrossRefGoogle Scholar
  54. 54.
    E.E. Oguzie, Y. Li, F.H. Wang, Corrosion inhibition and adsorption behaviour of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion. J. Colloid Interface Sci. 310(1), 90–98 (2007)PubMedCrossRefGoogle Scholar
  55. 55.
    L.O. Olasunkanmi, I.B. Obot, E.E. Ebenso, Adsorption and corrosion inhibition properties of N-{n-[1-R-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-3-yl]phenyl}methanesulfonamides on mild steel in 1 M HCl: experimental and theoretical studies. RSC Adv. 6(90), 86782–86797 (2016)CrossRefGoogle Scholar
  56. 56.
    M. Prajila, P.R. Ammal, A. Joseph, Comparative studies on the corrosion inhibition characteristics of three different triazine based Schiff’s bases, HMMT, DHMMT and MHMMT, for mild steel exposed in sulfuric acid. Egypt. J. Pet. 27(4), 467–475 (2017)CrossRefGoogle Scholar
  57. 57.
    I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium. Corros. Sci. 51(2), 276–282 (2009)CrossRefGoogle Scholar
  58. 58.
    S. Shen, C.D. Zhu, X.Y. Guo, C.C. Li, Y. Wen, H.F. Yang, The synergistic mechanism of phytic acid monolayers and iodide ions for inhibition of copper corrosion in acidic media. RSC Adv. 4(21), 10597–10606 (2014)CrossRefGoogle Scholar
  59. 59.
    T.I. Strelkova, G.P. Gurinovich, G.N. Sinyakov, Investigation of the ionization of phthalocyanines by luminescence spectra. J. Appl Spectros.  4(5), 313-315 (1996)Google Scholar
  60. 60.
    D.L. Ledson, M.V. Twigg, Acid-base behaviour of phthalocyanine. Inorg. Chim. Acta 13, 43–46 (1975)CrossRefGoogle Scholar
  61. 61.
    A.Y. El-Etre, Inhibition of aluminum corrosion using Opuntia extract. Corros. Sci. 45(11), 2485–2495 (2003)CrossRefGoogle Scholar
  62. 62.
    E.E. Oguzie, Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract. Corros. Sci. 49(3), 1527–1539 (2007)CrossRefGoogle Scholar
  63. 63.
    P.C. Okafor, M.E. Ikpi, I.E. Uwah, E.E. Ebenso, U.J. Ekpe, S.A. Umoren, Inhibitory action of Phyllanthus amarus extracts on the corrosion of mild steel in acidic media. Corros. Sci. 50(8), 2310–2317 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Nanotechnology Innovation, Department of ChemistryRhodes UniversityGrahamstownSouth Africa

Personalised recommendations