Advertisement

Electrocatalysis

, Volume 10, Issue 5, pp 477–488 | Cite as

Efficient Mechanochemical Preparation of Graphene-Like Molybdenum Disulfide and Graphene-Based Composite Electrocatalysts for Hydrogen Evolution Reaction

  • Oleg Yu. PosudievskyEmail author
  • Olga A. Kozarenko
  • Vyacheslav S. Dyadyun
  • Vyacheslav G. Koshechko
  • Vitaly D. Pokhodenko
Original Research

Abstract

Graphene-like MoS2 and graphene-based (gMoS2/Gr, Gr@gMoS2, and gMoS2@Gr) nanocomposites, which are able to operate as electrocatalysts of water splitting with hydrogen evolution, were prepared by solventless mechanochemical delamination of bulk molybdenum disulfide and graphite. It was shown that the sequence of nanostructuring significantly affects both the morphology and the electrocatalytic properties of the prepared nanocomposites. The material prepared by sequential mechanochemical treatment of molybdenum disulfide and graphite—gMoS2@Gr—is characterized by significant delamination of both components with nearly complete disruption of the layer ordering, few-layer MoS2 nanoparticles with higher degree of defectiveness, the graphene component with sufficiently large ordered regions, due to which it exhibited the best electrocatalytic performance with the Tafel slope of 60 mV/dec and the overvoltage of 195 mV at the current density of 10 mA/cm2 (or specific current ~ 17 A/g). It was shown that gMoS2@Gr nanocomposite as HER electrocatalyst can be used as an effective counter electrode in photoelectrochemical cells, providing the photocurrent of 1 mA/cm2 at the voltage of 365 mV. As a whole, the presented data show that gMoS2@Gr nanocomposite is an efficient HER electrocatalyst attractive due to the simplicity and cheapness of its preparation provided by the mechanochemical approach.

Graphical Abstract

Keywords

Graphene-like MoS2 Graphene Nanocomposites Electrocatalyst Hydrogen evolution reaction 

Notes

Funding information

This work was supported by the Targeted Research and Development Initiatives of the Science and Technology Center in Ukraine and the National Academy of Sciences of Ukraine and Targeted Comprehensive Fundamental Research Program of the National Academy of Sciences of Ukraine “Fundamental problems of creating new nanomaterials and nanotechnologies.”

Supplementary material

12678_2019_532_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1096 kb)

References

  1. 1.
    Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zh, 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28(10), 1917–1933 (2016)CrossRefPubMedGoogle Scholar
  2. 2.
    D. Voiry, H.S. Shin, K.P. Loh, M. Chhowalla, Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2(1), 0105 (2018)CrossRefGoogle Scholar
  3. 3.
    Y. Chen, K. Yang, B. Jiang, J. Li, M. Zeng, L. Fu, Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. J. Mater. Chem. A 5(18), 8187–8208 (2017)CrossRefGoogle Scholar
  4. 4.
    B. You, Y. Sun, Chalcogenide and phosphide solid-state electrocatalysts for hydrogen generation. ChemPlusChem. 81(10), 1045–1055 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Dutta, A review on production, storage of hydrogen and its utilization as an energy resource. J. Ind. Eng. Chem. 20(4), 1148–1156 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Xu, D. Li, P. Wu, One-Pot. Adv. Funct. Mater. 25(7), 1127–1136 (2015)CrossRefGoogle Scholar
  7. 7.
    R.J. Toh, Z. Sofer, J. Luxa, D. Sedmidubsky, M. Pumera, 3R phase of MoS2and WS2outperforms the corresponding 2H phase for hydrogen evolution. Chem. Commun. 53(21), 3054–3057 (2017)CrossRefGoogle Scholar
  8. 8.
    H. Huang, J. Huang, W. Liu, Y. Fang, Y. Liu, Ultradispersed and single-layered Mos2nanoflakes strongly coupled with graphene: an optimized structure with high kinetics for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 9(45), 39380–39390 (2017)CrossRefPubMedGoogle Scholar
  9. 9.
    B. Guo, K. Yu, H. Li, R. Qi, Y. Zhang, H. Song, Z. Tang, Z.-Q. Zhu, M. Chen, Coral-shaped MoS2decorated with graphene quantum dots performing as a highly active electrocatalyst for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 9(4), 3653–3660 (2017)CrossRefPubMedGoogle Scholar
  10. 10.
    J. Guo, H. Zhu, Y. Sun, L. Tang, X. Zhang, Doping MoS 2 with graphene quantum dots: structural and electrical engineering towards enhanced electrochemical hydrogen evolution. Electrochim. Acta 211, 603–610 (2016)CrossRefGoogle Scholar
  11. 11.
    A.P. Murthy, J. Theerthagiri, J. Madhavan, K. Murugan, Highly active MoS2/carbon electrocatalysts for the hydrogen evolution reaction – insight into the effect of the internal resistance and roughness factor on the Tafel slope. Phys. Chem. Chem. Phys. 19(3), 1988–1998 (2017)CrossRefPubMedGoogle Scholar
  12. 12.
    Q. Liu, Q. Fang, W. Chu, Y. Wan, X. Li, W. Xu, M. Habib, S. Tao, Y. Zhou, D. Liu, T. Xiang, A. Khalil, X. Wu, M. Chhowalla, P.M. Ajayan, L. Song, Electron-doped 1T-MoS2via interface engineering for enhanced electrocatalytic hydrogen evolution. Chem. Mater. 29(11), 4738–4744 (2017)Google Scholar
  13. 13.
    Y. Guo, X. Zhang, X. Zhang, T. You, Defect- and S-rich ultrathin MoS2nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution. J. Mater. Chem. A 3(31), 15927–15934 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Chatti, T. Gengenbach, R. King, L. Spiccia, A.N. Simonov, Vertically aligned interlayer expanded MoS2nanosheets on a carbon support for hydrogen evolution electrocatalysis. Chem. Mater. 29(7), 3092–3099 (2017)CrossRefGoogle Scholar
  15. 15.
    H.-Y. He, One-step assembly of 2H-1T MoS2:Cu/reduced graphene oxide nanosheets for highly efficient hydrogen evolution. Sci. Rep. 7(1), 45608 (2017)Google Scholar
  16. 16.
    Y. Guo, L. Gan, C. Shang, E. Wang, J. Wang, A cake-style CoS2@MoS2/RGO hybrid catalyst for efficient hydrogen evolution. Adv. Funct. Mater. 27(5), 1602699 (2017)CrossRefGoogle Scholar
  17. 17.
    J.E. Lee, J. Jung, T.Y. Ko, S. Kim, S.-I. Kim, J. Nah, S. Ryu, K.T. Nam, M.H. Lee, Catalytic synergy effect of MoS2/reduced graphene oxide hybrids for a highly efficient hydrogen evolution reaction. RSC Adv. 7(9), 5480–5487 (2017)CrossRefGoogle Scholar
  18. 18.
    H. Gu, Y. Huang, L. Zuo, W. Fan, T. Liu, Graphene sheets wrapped carbon nanofibers as a highly conductive three-dimensional framework for perpendicularly anchoring of MoS 2 : Advanced electrocatalysts for hydrogen evolution reaction. Electrochim. Acta 219, 604–613 (2016)CrossRefGoogle Scholar
  19. 19.
    L. Ma, Y. Hu, G. Zhu, R. Chen, T. Chen, H. Lu, Y. Wang, J. Liang, H. Liu, C. Yan, Z. Tie, Z. Jin, J. Liu, In situ thermal synthesis of inlaid ultrathin MoS2/graphene nanosheets as electrocatalysts for the hydrogen evolution reaction. Chem. Mater. 28(16), 5733–5742 (2016)CrossRefGoogle Scholar
  20. 20.
    E. Heydari-Bafrooei, N.S. Shamszadeh, Synergetic effect of CoNPs and graphene as cocatalysts for enhanced electrocatalytic hydrogen evolution activity of MoS2. RSC Adv. 6(98), 95979–95986 (2016)CrossRefGoogle Scholar
  21. 21.
    S.-K. Park, D.Y. Chung, D. Ko, Y.-E. Sung, Y. Piao, Three-dimensional carbon foam/N-doped graphene@MoS2hybrid nanostructures as effective electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 4(33), 12720–12725 (2016)CrossRefGoogle Scholar
  22. 22.
    Y. Shi, Y. Zhou, D.-R. Yang, W.-X. Xu, C. Wang, F.-B. Wang, J.-J. Xu, X.-H. Xia, H.-Y. Chen, Energy level engineering of MoS2by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc. 139(43), 15479–15485 (2017)CrossRefPubMedGoogle Scholar
  23. 23.
    P. Liu, J. Zhu, J. Zhang, P. Xi, K. Tao, D. Xue, D. Gao, P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2nanosheets toward electrocatalytic hydrogen evolution. ACS Energy Lett. 2(4), 745–752 (2017)CrossRefGoogle Scholar
  24. 24.
    J. Zhou, G. Fang, A. Pan, S. Liang, Oxygen-incorporated MoS2nanosheets with expanded interlayers for hydrogen evolution reaction and pseudocapacitor applications. ACS Appl. Mater. Interfaces 8(49), 33681–33689 (2016)CrossRefPubMedGoogle Scholar
  25. 25.
    W. Xiao, P. Liu, J. Zhang, W. Song, Y.P. Feng, D. Gao, J. Ding, Dual-functional N dopants in edges and basal plane of MoS2nanosheets toward efficient and durable hydrogen evolution. Adv. Energy Mater. 7(7), 1602086 (2017)CrossRefGoogle Scholar
  26. 26.
    J. Hu, B. Huang, C. Zhang, Z. Wang, Y. An, D. Zhou, H. Lin, M.K.H. Leung, S. Yang, Engineering stepped edge surface structures of MoS2sheet stacks to accelerate the hydrogen evolution reaction. Energy Environ. Sci. 10(2), 593–603 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Xie, H. Qu, J. Xin, X. Zhang, G. Cui, X. Zhang, J. Bao, B. Tang, Y. Xie, Defect-rich MoS2 nanowall catalyst for efficient hydrogen evolution reaction. Nano Res. 10(4), 1178–1188 (2017)CrossRefGoogle Scholar
  28. 28.
    Z. Liu, Z. Gao, Y. Liu, M. Xia, R. Wang, N. Li, Heterogeneous nanostructure based on 1T-phase MoS2for enhanced electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 9(30), 25291–25297 (2017)CrossRefPubMedGoogle Scholar
  29. 29.
    D. Wang, X. Zhang, S. Bao, Z. Zhang, H. Fei, Z. Wu, Phase engineering of a multiphasic 1T/2H MoS2catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 5(6), 2681–2688 (2017)CrossRefGoogle Scholar
  30. 30.
    N. Xue, P. Diao, Composite of few-layered MoS2grown on carbon black: tuning the ratio of terminal to total sulfur in MoS2for hydrogen evolution reaction. J. Phys. Chem. C 121(27), 14413–14425 (2017)CrossRefGoogle Scholar
  31. 31.
    X. Lu, Y. Lin, H. Dong, W. Dai, X. Chen, X. Qu, X. Zhang, One-step hydrothermal fabrication of three-dimensional MoS2 nanoflower using polypyrrole as template for efficient hydrogen evolution reaction. Sci. Rep. 7(1), 42309 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    X. Shang, W.-H. Hu, X. Li, B. Dong, Y.-R. Liu, G.-Q. Han, Y.-M. Chai, C.-G. Liu, Electrochim. Acta 224, 25 (2016)CrossRefGoogle Scholar
  33. 33.
    J. Yang, K. Wang, J. Zhu, C. Zhang, T. Liu, Self-templated growth of vertically aligned 2H-1T MoS2for efficient electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 8(46), 31702–31708 (2016)CrossRefPubMedGoogle Scholar
  34. 34.
    H. Huang, L. Chen, C. Liu, X. Liu, S. Fang, W. Liu, Y. Liu, Hierarchically nanostructured MoS2with rich in-plane edges as a high-performance electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 4(38), 14577–14585 (2016)CrossRefGoogle Scholar
  35. 35.
    D.J. Li, U.N. Maiti, J. Lim, D.S. Choi, W.J. Lee, Y. Oh, G.Y. Lee, S.O. Kim, Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett. 14(3), 1228–1233 (2014)CrossRefPubMedGoogle Scholar
  36. 36.
    Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011)CrossRefPubMedGoogle Scholar
  37. 37.
    O.Y. Posudievsky, O.A. Goncharuk, R. Barillé, V.D. Pokhodenko, Structure–property relationship in mechanochemically prepared polyaniline. Synth. Met. 160(5-6), 462–467 (2010)CrossRefGoogle Scholar
  38. 38.
    A.R. Gutiérrez, R.A. Vázquez, I. Moggio, E. Arias, O. Coreño, J.L. Maldonado, G. Ramos-Ortíz, O. Rodríguez, R.M. Jiménez-Barrera, Mechanosynthesis of a phenylenedivinylidenebisquinoline. Optical, morphological and electroluminescence properties. J. Mol. Struct. 1086, 138–145 (2015)CrossRefGoogle Scholar
  39. 39.
    O.Y. Posudievsky, O.A. Kozarenko, V.S. Dyadyun, S.W. Jorgensen, J.A. Spearot, V.G. Koshechko, V.D. Pokhodenko, Characteristics of mechanochemically prepared host–guest hybrid nanocomposites of vanadium oxide and conducting polymers. J. Power Sources 196(6), 3331–3341 (2011)CrossRefGoogle Scholar
  40. 40.
    O.Y. Posudievsky, O.A. Kozarenko, V.S. Dyadyun, I.E. Kotenko, V.G. Koshechko, V.D. Pokhodenko, Mechanochemically prepared polyaniline and graphene-based nanocomposites as electrodes of supercapacitors. J. Solis State Electrochem. 22(11), 3419–3430 (2018)CrossRefGoogle Scholar
  41. 41.
    O.Y. Posudievsky, O.A. Khazieieva, V.V. Cherepanov, V.G. Koshechko, V.D. Pokhodenko, High yield of graphene by dispersant-free liquid exfoliation of mechanochemically delaminated graphite. J. Nanopart. Res. 15(11), 2046 (2013)CrossRefGoogle Scholar
  42. 42.
    O.Y. Posudievsky, O.A. Khazieieva, V.V. Cherepanov, G.I. Dovbeshko, A.G. Shkavro, V.G. Koshechko, V.D. Pokhodenko, Improved dispersant-free liquid exfoliation down to the graphene-like state of solvent-free mechanochemically delaminated bulk MoS2. J. Mater. Chem. C 1(39), 6411 (2013)CrossRefGoogle Scholar
  43. 43.
    O.Y. Posudievsky, O.A. Khazieieva, A.S. Kondratyuk, V.V. Cherepanov, G.I. Dovbeshko, V.G. Koshechko, V.D. Pokhodenko, Liquid exfoliation of mechanochemically nanostructured tungsten disulfide to a graphene-like state. Nanotechnology 29(8), 085704 (2018)CrossRefPubMedGoogle Scholar
  44. 44.
    А.М. Sukchotin, Handbook of Electrochemistry, 1st edn. (Khimiya, Leningrad, 1981, in Russian)Google Scholar
  45. 45.
    S. Najmaei, Z. Liu, P. M. Ajayan, J. Lou, Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses. Appl. Phys. Lett. 100(1), 013106 (2012)Google Scholar
  46. 46.
    S. Jeong, H.-Y. Shin, R.H. Shin, W. Jo, S. Yoon, M. Rübhausen, Raman scattering studies of the lattice dynamics in layered MoS2. J. Korean Phys. Soc. 66(10), 1575–1580 (2015)CrossRefGoogle Scholar
  47. 47.
    H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of raman scattering. Adv. Funct. Mater. 22(7), 1385–1390 (2012)CrossRefGoogle Scholar
  48. 48.
    S. Mignuzzi, A.J. Pollard, N. Bonini, B. Brennan, I.S. Gilmore, M.A. Pimenta, D. Richards, D. Roy, Effect of disorder on Raman scattering of single-layerMoS2. Phys. Rev. B 91(19), 195411 (2015)CrossRefGoogle Scholar
  49. 49.
    W.M. Parkin, A. Balan, L. Liang, P.M. Das, M. Lamparski, C.H. Naylor, J.A. Rodríguez-Manzo, A.T.C. Johnson, V. Meunier, M. Drndić, Raman shifts in electron-irradiated monolayer MoS2. ACS Nano 10(4), 4134–4142 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8(4), 235–246 (2013)CrossRefPubMedGoogle Scholar
  51. 51.
    M. Bruna, A.K. Ott, M. Ijäs, D. Yoon, U. Sassi, A.C. Ferrari, Doping dependence of the raman spectrum of defected graphene. ACS Nano 8(7), 7432–7441 (2014)CrossRefPubMedGoogle Scholar
  52. 52.
    B.E. Conway, B.V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47(22-23), 3571–3594 (2002)CrossRefGoogle Scholar
  53. 53.
    J.G.N. Thomas, Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals. Trans. Faraday Soc. 57, 1603 (1961)Google Scholar
  54. 54.
    A. Kahyarian, B. Brown, S. Nesic, Mechanism of the hydrogen evolution reaction in mildly acidic environments on gold. J. Electrochem. Soc. 164(6), H365–H374 (2017)CrossRefGoogle Scholar
  55. 55.
    H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman, A.H. Fragapane, J. Zhao, H.S. Han, H.C. Manoharan, F. Abild-Pedersen, J.K. Nørskov, X. Zheng, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15(1), 48–53 (2016)CrossRefPubMedGoogle Scholar
  56. 56.
    P.D. Tran, T.V. Tran, M. Orio, S. Torell, Q.D. Truong, K. Nayuki, Y. Sasaki, S.Y. Chiam, R. Yi, I. Honma, J. Barber, V. Artero, Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nat. Mater. 15(6), 640–646 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    H.-J. Lewerenz, L. Peter, Photoelectrochemical water splitting. Materials, processes and architectures, 1st edn. (Royal Society of Chemistry, Cambridge, 2013), pp. 3–8CrossRefGoogle Scholar
  58. 58.
    S. Emin, M. de Respinis, T. Mavrič, B. Dam, M. Vakant, W.A. Smith, Photoelectrochemical water splitting with porous α-Fe2O3 thin films prepared from Fe/Fe-oxide nanoparticles. Appl. Cat. A: General 523, 130–138 (2016)CrossRefGoogle Scholar
  59. 59.
    C.H. Bak, K. Kim, K. Jung, J.-B. Kim, J.-H. Jang, Efficient photoelectrochemical water splitting of nanostructured hematite on a three-dimensional nanoporous metal electrode. J. Mater. Chem. A 2(41), 17249–17252 (2014)CrossRefGoogle Scholar
  60. 60.
    X. Shi, K. Zhang, K, Shin, M. Ma, J. Kwon, I.T. Choi, J.K. Kim, D.H. Wang, J.H. Park, Nano Energy 13, 182 (2015), Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device, 191Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations