Advertisement

Electrocatalytic Determination of Hg(II) by the Modified Carbon Paste Electrode with Sn(IV)-Clinoptilolite Nanoparticles

  • Tahmineh Tamiji
  • Alireza Nezamzadeh-EjhiehEmail author
Original Research

Abstract

In this work, the electro-reduction of Hg(II) was studied by the modified carbon paste electrode (CPE) with clinoptilolite nanoparticles (CNP) ion exchanged with Sn(IV) cations (Sn(IV)-CNP/CPE). When the Sn(IV)-CNP/CPE electrode was immersed in HCl as supporting electrolyte, the voltammetric peak currents were observed for Sn(IV)/Sn(II) redox reactions in cyclic voltammetry. The reduction peak current of Sn(IV) was increased in the presence of Hg(II) cations in solution. This increase in the peak current was used for the voltammetric determination of Hg(II) in solution. The constructed calibration curve in square wave voltammetry showed a proportional relationship between the peak current and concentration of Hg(II) cations in the range of 0.1–100 μM with a detection limit of 0.01 μM. The electrode showed good selectivity towards Hg(II) cations in the hard conditions in the presence of some strong oxidizing agents. The selected cations could strongly compete with Hg(II) cations to oxidize the electrogenerated Sn(II) cations. The electrode had also good applicability in Hg determination in real samples such as tuna fish, sea fish, mushroom and black tea, river water, and a steel company wastewater samples.

Graphical Abstract

Cyclic voltammograms (CVs) of the (a) CPE, (b) CNP-CPE, (e) CMP-Sn(IV)-CPE, and (h) CNP-Sn(IV)-CPE in HCl (pH 2.5) and (c) CPE, (d) CNP-CPE, (f) CMP-Sn(IV) CPE, and (g) CNP-Sn(IV)-CPE in HCl (pH 2.5) + 1 × 10−3 mol L−1 Hg2+, ν = 300 mV s−1, 25% modifier

Keywords

Mercury(II) Zeolite modified carbon paste electrode Clinoptilolite nanoparticles Electrocatalysis 

Notes

Supplementary material

12678_2019_528_MOESM1_ESM.docx (190 kb)
ESM 1 (DOCX 190 kb)

References

  1. 1.
    D.Q. Hung, O. Nekrassova, R.G. Compton, Analytical methods for inorganic arsenic in water: a review. Talanta 64, 269–277 (2004)CrossRefGoogle Scholar
  2. 2.
    A. Bobrowski, A. Krolicka, J. Zarebski, Characteristics of voltammetric determination and speciation of chromium – a review. Electroanalysis 21, 1449–1458 (2009)CrossRefGoogle Scholar
  3. 3.
    R. Eisler, Mercury hazards to fish, wildlife, and invertebrates: a synoptic review (U.S. Fish and Wildlife Service Biological Report 85, 1987), pp. 1–10Google Scholar
  4. 4.
    T.W. Clarkson, Mercury: major issues in environmental health. Environ. Health Perspect. 100, 31–38 (1992)CrossRefGoogle Scholar
  5. 5.
    A. Sigel, H. Sigel, Metal ions in biological systems, mercury and its effects on environment and biology, vol 34 (Dekker, New York, 1997), pp. 1–15Google Scholar
  6. 6.
    USEPA, Mercury Study Report to Congress, EPA-452/R-97-005, 1997Google Scholar
  7. 7.
    T.W. Clarkson, D.O. Marsh, Mercury toxicity in man, in clinical, biochemical, and nutritional aspects of trace elements, vol. 6, ed. by A.S. Prasad, (Alan R. Liss, Inc., New York, 1982), p. 549Google Scholar
  8. 8.
    I. Wagner-Döbler, Pilot plant for bioremediation of mercury-containing industrial wastewater. Appl. Microbiol. Biotechnol. 62, 124–133 (2003)CrossRefGoogle Scholar
  9. 9.
    R.P. Mason, W.F. Fitzgerald, F.M.M. Morel, The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim. Cosmochim. Acta 58, 3191–3198 (1994)CrossRefGoogle Scholar
  10. 10.
    W.F. Fitzgerald, D. Engstrom, R.P. Mason, E.A. Nater, The case for atmospheric mercury contamination in remote areas. Environ. Sci. Technol. 32, 1–6 (1998)CrossRefGoogle Scholar
  11. 11.
    R.P. Mason, J.R. Reinfelder, F.M.M. Morel, Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environ. Sci. Technol. 30, 1835–1845 (1996)CrossRefGoogle Scholar
  12. 12.
    L. Laffont, J.E. Sonke, L. Maurice, H. Hintelmann, M. Pouilly, Y. Sanchez Bacarreza, T. Perez, P. Behra, Anomalous mercury isotopic compositions of fish and human hair in the Bolivian Amazon. Environ. Sci. Technol. 43, 8985–8990 (2009)CrossRefGoogle Scholar
  13. 13.
    K. Leopold, M. Foulkes, P. Worsfold, Methods for the determination and speciation of mercury in natural waters-a review. Anal. Chim. Acta 663, 127–138 (2010)CrossRefGoogle Scholar
  14. 14.
    K. Sideeq Bhat, R. Ahmad, J.-Y. Yoo, Y.-B. Hahn, Fully nozzle-jet printed non-enzymatic electrode for biosensing application. J. Colloid Interf. Sci. 512, 480–488 (2018)CrossRefGoogle Scholar
  15. 15.
    A. Ehsani, M. Hadi, E. Kowsari, S. Doostikhah, J. Torabian, Electrocatalytic oxidation of ethanol on the surface of the POAP/ phosphoric acid-doped ionic liquid-functionalized graphene oxide nanocomposite film. Iranian J. Catal. 7(3), 187–192 (2017)Google Scholar
  16. 16.
    B. Pierozynski, T. Mikolajczyk, Enhancement of ethanol oxidation reaction on Pt (PtSn)-activated nickel foam through in situ formation of nickel oxy-hydroxide laye. Electrocatalysis 8, 252–260 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Bala, Ł. Górski, Determination of mercury cation using electrode modified with phosphorothioate oligonucleotide. Sensors Actuator B: Chem. 230, 731–735 (2016)CrossRefGoogle Scholar
  18. 18.
    M.A. Deshmukh, R. Celiesiute, A. Ramanaviciene, M.D. Shirsat, A. Ramanavicius, EDTA_PANI/SWCNTs nanocomposite modified electrode for electrochemical determination of copper (II), lead (II) and mercury (II) ions. Electrochim. Acta 259, 930–938 (2018)CrossRefGoogle Scholar
  19. 19.
    A. Nosal-Wiercińska, M. Grochowski, M. Wiśniewska, K. Tyszczuk-Rotko, S. Skrzypek, M. Brycht, D. Guziejewski, The influence of protonation on the electroreduction of Bi (III) ions in chlorates (VII) solutions of different water activity. Electrocatalysis 6, 315–321 (2015)CrossRefGoogle Scholar
  20. 20.
    A. Kamal, Z. She, R. Sharma, H.-B. Kraatz, Interactions of Hg(II) with oligonucleotides having thymine–thymine mispairs. Optimization of an impedimetric Hg(II) sensor. Analyst 142, 1827–1834 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Kalate Bojdi, M. Behbahani, F. Omidi, G. Hesam, Application of a novel electrochemical sensor based on modified siliceous mesocellular foam for electrochemical detection of ultra-trace amounts of mercury ions. New J. Chem. 40, 4519–4527 (2016)CrossRefGoogle Scholar
  22. 22.
    M.H. Nobahari, A. Novzad Golikand, M. Bagherzadeh, Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation. Iranian J. Catal. 7, 327–335 (2017)Google Scholar
  23. 23.
    G. Kuzu Çelik, A.F. Üzdürmez, A. Erkal, E. Kılıç, A. Osman Solak, Z. Üstündağ, 3,8-Diaminobenzo[c]cinnoline derivatived graphene oxide modified graphene oxide sensor for the voltammetric determination of Cd2+ and Pb2+. Electrocatalysis 7, 207–214 (2016)CrossRefGoogle Scholar
  24. 24.
    R. Abdullah Mirzaie, F. Hamedi, Introducing Pt/ZnO as a new non carbon substrate electro catalyst for oxygen reduction reaction at low temperature acidic fuel cells. Iranian J. Catal. 5, 275–283 (2015)Google Scholar
  25. 25.
    A. Walcarius, Factors affecting the analytical applications of zeolite modified electrodes: indirect detection of nonelectroactive cations. Anal. Chim. Acta 388, 79–91 (1999)CrossRefGoogle Scholar
  26. 26.
    B.M. Daas, S. Ghosh, Fuel cell applications of chemically synthesized zeolite modified electrode (ZME) as catalyst for alcohol electro-oxidation - a review. J. Electroanal. Chem. 783, 308–315 (2016)CrossRefGoogle Scholar
  27. 27.
    A. Walcarius, Zeolite-modified electrodes in electroanalytical chemistry, Review article. Anal. Chim. Acta 384, 1–16 (1999)CrossRefGoogle Scholar
  28. 28.
    E.M. maximiano, F. de Lima, C.A.L. Cardoso, G.J. Arruda, Modification of carbon paste electrodes with recrystallized zeolite for simultaneous quantification of thiram and carbendazim in food samples and an agricultural formulation. Electrochim. Acta 259, 66–76 (2018)CrossRefGoogle Scholar
  29. 29.
    S. Samanta, R. Srivastava, Simultaneous determination of epinephrene and paracetamol at copper-cobalt oxide spinel decorated nanocrystalline zeolite modified electrodes. J. Colloids Interf. Sci. 475, 126–135 (2016)CrossRefGoogle Scholar
  30. 30.
    S. Senthilkumar, R. Saraswathi, Electrochemical sensing of cadmium and lead ions at zeolite-modified electrodes: optimization and field measurements. Sensors Actuator B: Chem. 141, 65–75 (2009)CrossRefGoogle Scholar
  31. 31.
    S. Liu, J. Tian, J. Zhai, L. Wang, W. Lu, X. Sun, Titanium silicalite-1 zeolite microparticles for enzymeless H2O2 detection. Analyst 136, 2037–2039 (2011)CrossRefGoogle Scholar
  32. 32.
    N. Seyed, S. Azizi, F.A. Ghasemi, Nickel/P nanozeolite modified electrode: a new sensor for the detection of formaldehyde. Sensors Actuator B: Chem. 227, 1–10 (2016)CrossRefGoogle Scholar
  33. 33.
    B. Kaur, R. Srivastava, B. Satpati, Ultratrace detection of toxic heavy metal ions found in water bodies using hydroxyapatite supported nanocrystalline ZSM-5 modified electrodes. New J. Chem. 39, 5137–5149 (2015)CrossRefGoogle Scholar
  34. 34.
    T. Tamiji, A. Nezamzadeh-Ejhieh, A comprehensive study on the kinetic aspects and experimental design for the voltammetric response of a Sn(IV)-clinoptilolite carbon paste electrode towards Hg(II). J. Electroanal. Chem. 829, 95–105 (2018)CrossRefGoogle Scholar
  35. 35.
    M. Saadat, A. Nezamzadeh-Ejhieh, Clinoptilolite nanoparticles containing HDTMA and Arsenazo III as a sensitive carbon paste electrode modifier for indirect voltammetric measurement of Cesium ions. Electrochim. Acta 217, 163–170 (2016)CrossRefGoogle Scholar
  36. 36.
    W. Yanzi, X. Guanhong, W. Fangdi, Q. Song, T. Tang, X. Wang, H. Qin, Determination of Hg (II) in tea and mushroom samples based onmetal-organic frameworks as solid phase extraction sorbents. Microporous Mesoporous Mater. 235, 204–210 (2016)CrossRefGoogle Scholar
  37. 37.
    P. Scherrer. Bestimmung der Grösse und der innerenStruktur von KolloidteilchenmittelsRöntgensrahlen [Determination of the size and internal structure of colloidal particles using X-rays], (Nachr Ges Wiss Goettingen. Math-Phys Kl. 1918, German, (1918), pp. 98–100.Google Scholar
  38. 38.
    S. Aghabeygi, R. Kia Kojoori, H. Vakili Azad, Sonosynthesis, characterization and photocatalytic degradation property of nanoZnO/zeoliteA. Iranian J. Catal. 6, 275–279 (2016)Google Scholar
  39. 39.
    E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 19–28 (1979)CrossRefGoogle Scholar
  40. 40.
    S.N. Azizi, S. Ghasemi, E. Chiani, Nickel/mesoporous silica (SBA-15) modified electrode: an effective porous material for electrooxdation of methanol. Electrochim. Acta 88, 463–472 (2013)CrossRefGoogle Scholar
  41. 41.
    R.K. Shervedani, M. Bagherzadeh, Electrochemical impedance spectroscopy as a transduction method for electrochemical recognition of zirconium on gold electrode modified with hydroxamated self-assembled monolayer. Sensors Actuators B: Chem. 139, 657–664 (2009)CrossRefGoogle Scholar
  42. 42.
    A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd edn. (Wiley, New York, 2001), pp. 398–401Google Scholar
  43. 43.
    M.H. Sheikh-Mohseni, A. Nezamzadeh-Ejhieh, Modification of carbon paste electrode with Ni-clinoptilolite nanoparticles for electrocatalytic oxidation of methanol. Electrochim. Acta 147, 572–581 (2014)CrossRefGoogle Scholar
  44. 44.
    W. Chansuvarn, A. Imyim, Visual and colorimetric detection of mercury(II) ion using gold nanoparticles stabilized with a dithia-diaza ligand. Microchim. Acta 176, 57–64 (2012)CrossRefGoogle Scholar
  45. 45.
    K.H. Chen, G.H. Lu, J.B. Chang, S. Mao, K.H. Yu, S.M. Cui, J.H. Chen, Hg(II) Ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles. Anal. Chem. 84, 4057–4062 (2012)CrossRefGoogle Scholar
  46. 46.
    X.W. Xu, J. Wang, K. Jiao, X.R. Yang, Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range. Biosens. Bioelectron. 24, 3153–3158 (2009)CrossRefGoogle Scholar
  47. 47.
    D.B. Liu, W.S. Qu, W.W. Chen, W. Zhang, Z. Wang, X.Y. Jiang, Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(II) ions in aqueous solution. Anal. Chem. 82, 9021–9028 (2010)Google Scholar
  48. 48.
    J.S. Lee, M.S. Han, C.A. Mirkin, Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. 119, 4171–4174 (2007)CrossRefGoogle Scholar
  49. 49.
    A. Guarda, P.C. Nascimento, D. Bohrer, L.M. de Carvalho, A.B. Schneider, D. Dias, B. Wiethan, Voltammetric determination of mercury(II) in hemodialysis polyelectrolyte solutions using Bi–glassy carbon electrodes modified with L-cysteine. Anal. Methods 5, 4739–4745 (2013)CrossRefGoogle Scholar
  50. 50.
    M. Guo, H. Jiang, M. Shuang, S. Xiaohan, M. Zheng, Determination of Hg2+ based on the selective enhancement of peroxidase mimetic activity of Hollow porous gold nanoparticles. NANO 12, 1750050 (2017) 11CrossRefGoogle Scholar
  51. 51.
    J.S. Kim, M.G. Choi, K.C. Song, K.T. No, S. Ahn, S.-K. Chang, Ratiometric Determination of Hg2+ ions based on simple molecular motifs of pyrene and dioxaoctanediamide. Org. Lett. 9, 1129–1132 (2007)CrossRefGoogle Scholar
  52. 52.
    J. Lu, X. He, X. Zeng, Q. Wan, Z. Zhang, Voltammetric determination of mercury (II) in aqueous media using glassy carbon electrodes modified with novel cali x[4]arene. Talanta 59, 553–560 (2003)CrossRefGoogle Scholar
  53. 53.
    Y. Wang, F. Yang, X. Yang, Colorimetric biosensing of mercury(II) ion using unmodified gold nanoparticleprobes and thrombin-binding aptamer. Biosens. Bioelectron. 25, 1994–1999 (2010)CrossRefGoogle Scholar
  54. 54.
    L.H. Gan, N.K. Goh, B. Chen, C.K. Chu, G.R. Deen, C.H. Chew, Copolymers of N-acryloyl-N’-metbylpiperazine and methyl methylacrylate were synthesized and its application for Hg(II) detection by anodic striping voltammetry. European Polym. J. 33, 615–620 (1997)CrossRefGoogle Scholar
  55. 55.
    F.H. Nascimento, J.C. Masini, Complexation of Hg(II) by humic acid studied by square wave stripping voltammetry at screen-printed gold electrodes. Talanta 100, 57–63 (2012)CrossRefGoogle Scholar
  56. 56.
    T. Hezard, K. Fajerwerg, D. Evrard, V. Collière, P. Behra, P. Gros, Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: Application to Hg(II) trace analysis. J. Electroanal. Chem. 664, 46–52 (2012)CrossRefGoogle Scholar
  57. 57.
    M. Amiri, H. Salehniya, A. Habibi-Yangjeh, Graphitic carbon nitride/chitosan composite for adsorption and electrochemical determination of mercury in real samples. Ind. Eng. Chem. Res. 55, 8114–8122 (2016)CrossRefGoogle Scholar
  58. 58.
    D. Han, Y. Kim, J. Oh, T. Kim, R.K. Mahajan, J.S. Kim, H. Kim, A regenerative electrochemical sensor based on oligonucleotide for the selective determination of mercury(II). Analyst 134, 1857–1862 (2009)CrossRefGoogle Scholar
  59. 59.
    S. Lahrich, B. Manoun, M.A. El Muhammedi, S. Lahrich, B. Manoun, M.A. El Muhammedi, Catalytic effect of potassium in Na1−xKxCdPb3(PO4)3 to detect mercury (II) in fish and seawater using a carbon paste electrode. Talanta 149, 158–167 (2016)CrossRefGoogle Scholar
  60. 60.
    H. Xing, J. Xu, X. Zhu, X. Duan, L. Lu, W. Wang, Y. Zhang, T. Yang, Highly sensitive simultaneous determination of cadmium (II), lead (II), copper (II), and mercury (II) ions on N-doped graphene modified electrode. J. Electroanal. Chem. 760, 52–58 (2016)CrossRefGoogle Scholar
  61. 61.
    S. Ozkorucuklu, G. Yildirim, T. Koseoglu, F. Karipcin, E. Kir, Voltammetric determination of mercury(II) using a modified pencil graphite electrode with 4-(4-methylphenyl aminoisonitrosoacetyl) biphenyl. J. Iran. Chem. Soc. 14, 1651–1657 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Shahreza BranchIslamic Azad UniversityIsfahanIslamic Republic of Iran
  2. 2.Young Researchers and Elite Club, Shahreza BranchIslamic Azad UniversityShahrezaIslamic Republic of Iran
  3. 3.Razi Chemistry Research Center (RCRC), Shahreza BranchIslamic Azad UniversityIsfahanIslamic Republic of Iran

Personalised recommendations