Evidences of the Electrochemical Production of Sulfate Radicals at Cathodically Polarized TiO2 Nanotubes Electrodes

  • Guilherme G. BessegatoEmail author
  • Maria Valnice Boldrin Zanoni
  • Germano Tremiliosi-Filho
  • Cleber A. Lindino
Original Research


This work presents a novel approach for cathodically polarized TiO2 nanotube electrodes in electrochemical advanced oxidation processes generating sulfate radicals. Although TiO2 do not offer electrochemical response at the anodic region in the dark, its simple self-doping can enable oxidation capacity. Cathodically polarized TiO2 electrode (CP-TNT) was applied in the electrolysis of p-nitrosodimethylaniline dye in sulfate and nitrate aqueous electrolytes, showing much better decolorization efficiency in the presence of sulfate ions. Another evidence of SO4•− generation was the detection of persulfate ions (SO4•− + SO4•− → S2O82−) formed during bulk electrolysis of a sulfate aqueous solution (38 μmol L−1 S2O82− after 30 min). These results open the way for application of CP-TNT electrodes in EAOPs as an alternative for highly cost anodes for electrochemical generation of active sulfate species for degradation of organic contaminants.

Graphical Abstract


TiO2 self-doping Electrochemically activated sulfate Electrochemical advanced oxidation processes Dye oxidation Persulfate 


Funding Information

The authors are grateful to the Brazilian Research Agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)—Finance Code 001; FAPESP (grant numbers 2014/50945-4, 2013/16930-7) and CNPq (grant number 428014/2018-6) for the financial support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    G.P. Anipsitakis, D.D. Dionysiou, Environ. Sci. Technol. 37(20), 4790–4797 (2003)CrossRefGoogle Scholar
  2. 2.
    W. Da Oh, Z. Dong, T.T. Lim, Appl. Catal. B Environ. 194, 169–201 (2016)CrossRefGoogle Scholar
  3. 3.
    A. Farhat, J. Keller, S. Tait, J. Radjenovic, Environ. Sci. Technol. 49, 14326 (2015)CrossRefGoogle Scholar
  4. 4.
    J.E.L. Santos, M.A. Quiroz, M. Cerro-Lopez, D.C. de Moura, C.A. Martínez-Huitle, New J. Chem. 42(7), 5523–5531 (2018)CrossRefGoogle Scholar
  5. 5.
    J. Radjenovic, D.L. Sedlak, Environ. Sci. Technol. 49, 11292 (2015)CrossRefGoogle Scholar
  6. 6.
    C. Comninellis, Electrochim. Acta 39(11-12), 1857–1862 (1994)CrossRefGoogle Scholar
  7. 7.
    E. Brillas, C.A. Martínez-Huitle, Appl. Catal. B Environ. 166(167), 603 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Davis, J.C. Baygents, J. Farrell, Electrochim. Acta 150, 68–74 (2014)CrossRefGoogle Scholar
  9. 9.
    K. Serrano, P.A. Michaud, C. Comninellis, A. Savall, Electrochim. Acta 48(4), 431–436 (2002)CrossRefGoogle Scholar
  10. 10.
    S.N. Frank, A.J. Bard, J. Am. Chem. Soc. 97(26), 7427–7433 (1975)CrossRefGoogle Scholar
  11. 11.
    J.E.L. Santos, D.C. de Moura, D.R. da Silva, M. Panizza, C.A. Martínez-Huitle, J. Solid State Electrochem. 23(2), 351–360 (2019)CrossRefGoogle Scholar
  12. 12.
    J. Kim, C. Kim, S. Kim, J. Yoon, J. Ind. Eng. Chem. 66, 478–483 (2018)CrossRefGoogle Scholar
  13. 13.
    G.G. Bessegato, F.F. Hudari, M.V.B. Zanoni, Electrochim. Acta 235, 527–533 (2017)CrossRefGoogle Scholar
  14. 14.
    C. Kim, S. Kim, J. Choi, J. Lee, J.S. Kang, Y.E. Sung, J. Lee, W. Choi, J. Yoon, Electrochim. Acta 141, 113–119 (2014)CrossRefGoogle Scholar
  15. 15.
    F.F. Hudari, G.G. Bessegato, F.C. Bedatty Fernandes, M.V.B. Zanoni, P.R. Bueno, Anal. Chem. 90(12), 7651–7658 (2018)CrossRefGoogle Scholar
  16. 16.
    C.A. Grimes, G.K. Mor, TiO2 Nanotube Arrays: Synthesis, Properties, and Applications (Springer, New York, 2009)CrossRefGoogle Scholar
  17. 17.
    Y.-C. Nah, I. Paramasivam, P. Schmuki, Chemphyschem 11(13), 2698–2713 (2010)CrossRefGoogle Scholar
  18. 18.
    J.M. Macak, B.G. Gong, M. Hueppe, P. Schmuki, Adv. Mater. 19(19), 3027–3031 (2007)CrossRefGoogle Scholar
  19. 19.
    F. Fabregat-Santiago, E.M. Barea, J. Bisquert, G.K. Mor, K. Shankar, C.A. Grimes, J. Am. Chem. Soc. 130, 11312 (2008)CrossRefGoogle Scholar
  20. 20.
    Y. Yang, M.R. Hoffmann, Environ. Sci. Technol. 50(21), 11888–11894 (2016)CrossRefGoogle Scholar
  21. 21.
    C. Kim, S. Kim, J. Lee, J. Kim, J. Yoon, ACS Appl. Mater. Interfaces 7(14), 7486–7491 (2015)CrossRefGoogle Scholar
  22. 22.
    C. Kim, S. Lee, S. Kim, J. Yoon, Electrochim. Acta 222, 1578–1584 (2016)CrossRefGoogle Scholar
  23. 23.
    C. Kim, S. Kim, S.P. Hong, J. Lee, J. Yoon, Phys. Chem. Chem. Phys. 18(21), 14370–14375 (2016)CrossRefGoogle Scholar
  24. 24.
    G.G. Bessegato, J.C. Cardoso, B.F. Silva, M.V.B. Zanoni, J. Photochem. Photobiol. A Chem. 276, 96 (2013)CrossRefGoogle Scholar
  25. 25.
    C. Liang, C.F. Huang, N. Mohanty, R.M. Kurakalva, Chemosphere 73(9), 1540–1543 (2008)CrossRefGoogle Scholar
  26. 26.
    R.F.P. Nogueira, M.C. Oliveira, W.C. Paterlini, Talanta 66(1), 86–91 (2005)CrossRefGoogle Scholar
  27. 27.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, 2000)Google Scholar
  28. 28.
    P. Fernández-Castro, M. Vallejo, M.F. San Román, I. Ortiz, J. Chem. Technol. Biotechnol. 90(5), 796–820 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Engenharias e Ciências ExatasUniversidade Estadual do Oeste do Paraná (Unioeste)ToledoBrazil
  2. 2.Instituto de Química, AraraquaraUniversidade Estadual Paulista (Unesp)AraraquaraBrazil
  3. 3.Instituto de Química de São CarlosUniversidade de São Paulo (USP)São CarlosBrazil

Personalised recommendations