, Volume 10, Issue 2, pp 134–148 | Cite as

Non-Noble Fe-Nx/C Electrocatalysts on Tungsten Carbides/N-Doped Carbons for the Oxygen Reduction Reaction

  • Ulisses A. do Rêgo
  • Thiago LopesEmail author
  • José L. Bott-Neto
  • Ana M. Gómez-Marin
  • Auro A. Tanaka
  • Edson A. Ticianelli
Original Research


This work investigates the influence of different nitration protocols of a carbon black, the addition of tungsten carbide (WC), and the presence of iron, in terms of the catalytic activity of electrocatalysts containing Fe-Nx moieties towards the oxygen reduction reaction (ORR) in acidic and alkaline media. The synthesized materials were characterized using X-ray diffraction (XRD), Raman spectroscopy (Raman), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) with a rotating ring-disk electrode (RRDE), in addition to durability tests. In acidic media, the performance of the catalysts varied according to the type of nitration protocol, the presence of iron, and the heat treatment temperature, which is accompanied by variations in the ORR mechanism. In alkaline electrolyte, the electrocatalysts presented higher performances, with only an ~0.04-V difference relative to that of a standard platinum on carbon catalyst. The number of electrons transferred per oxygen molecule, the amounts of hydrogen peroxide generated in the ORR, the effect of catalyst loading, and the presence of iron in the catalysts were investigated with the aim of understanding the ORR mechanism and assisting in the production of high-performance and durable materials. Finally, the two best electrocatalysts were submitted to a standard durability test, which evidenced promising high stability at both pHs.

Graphical Abstract


Non-noble metal catalysts Fe-Nx catalysts Oxygen reduction Acid media Alkaline media 



The Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES; process number 1423454) and the Sao Paulo Research Foundation (FAPESP) under process number 2013/16930-7 provided the financial support. T.L. was provided support by the Sao Paulo Research Foundation under projects 14/22130-6 and 17/15304-6 for T.L.’s Young Investigator Award (i.e., research fellowship) and the support of project 2014/09087-4. T.L. was also provided support by the RCGI Research Centre for Gas Innovation, sponsored by FAPESP (2014/50279-4) and Shell.

Supplementary material

12678_2018_503_MOESM1_ESM.docx (771 kb)
ESM 1 (DOCX 770 kb)


  1. 1.
    H. Wang, R. Côté, G. Faubert, D. Guay, J.P. Dodelet, Effect of the Pre-Treatment of Carbon Black Supports on the Activity of Fe-Based Electrocatalysts for the Reduction of Oxygen. J. Phys. Chem. B 103(12), 2042–2049 (1999)Google Scholar
  2. 2.
    T. Schilling, M. Bron, Oxygen reduction at Fe–N-modified multi-walled carbon nanotubes in acidic electrolyte. Electrochim. Acta 53(16), 5379–5385 (2008)Google Scholar
  3. 3.
    M. Bron, J. Radnik, M. Fieber-erdmann, P. Bogdanoff, S. Fiechter, EXAFS, XPS and electrochemical studies on oxygen reduction catalysts obtained by heat treatment of iron phenanthroline complexes supported on high surface area carbon black. J. Electrochem. Chem. 535(1-2), 113–119 (2002)Google Scholar
  4. 4.
    H. Meng, N. Larouche, M. Lefèvre, F. Jaouen, B. Stansfield, J. Dodelet, Iron porphyrin-based cathode catalysts for polymer electrolyte membrane fuel cells: Effect of NH3 and Ar mixtures as pyrolysis gases on catalytic activity and stability. Electrochim. Acta 55(22), 6450–6461 (2010)Google Scholar
  5. 5.
    M.S. Shafeeyan, W. Mohd, A. Wan, A. Houshmand, A. Shamiri, A review on surface modification of activated carbon for carbon dioxide adsorption. J. Anal. Appl. Pyrolysis 89(2), 143–151 (2010)Google Scholar
  6. 6.
    M.A. Montes-Morán, D. Suárez, J.A. Menéndeza, E. Fuente, On the nature of basic sites on carbon surfaces: an overview. Carbon N. Y. 42(7), 1219–1225 (2004)Google Scholar
  7. 7.
    C. . Leon y Leon, J. . Solar, V. . Calemma, and L. . Radovic, Carbon N. Y. 30, 797 (1992), Evidence for the protonation of basal plane sites on carbon, 5, 811Google Scholar
  8. 8.
    K.B. Bota, M.K. Abotsi, C. Atlanta, Ammonia: a reactive medium for catalysed coal gasification. Fuel 73(8), 1354–1357 (1994)Google Scholar
  9. 9.
    B. Stohr, H.P. Boehm, Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate. Carbon N. Y. 29(6), 707–720 (1991)Google Scholar
  10. 10.
    A.C. Garcia, E.A. Ticianelli, Investigation of the oxygen reduction reaction on Pt–WC/C electrocatalysts in alkaline media. Electrochim. Acta 106, 453–459 (2013)Google Scholar
  11. 11.
    A.M. Gómez-Marín, J.L. Bott-Neto, J.B. Souza, T.L. Silva, W. Beck, L.C. Varanda, E.A. Ticianelli, Electrocatalytic Activity of Different Phases of Molybdenum Carbide/Carbon and Platinum-Molybdenum Carbide/Carbon Composites toward the Oxygen Reduction Reaction. ChemElectroChem 3(10), 1570–1579 (2016)Google Scholar
  12. 12.
    J.L. Bott-Neto, W. Beck, L.C. Varanda, E.A. Ticianelli, Electrocatalytic activity of platinum nanoparticles supported on different phases of tungsten carbides for the oxygen reduction reaction. Int. J. Hydrog. Energy 42(32), 20677–20688 (2017)Google Scholar
  13. 13.
    V.M. Nikolic, I.M. Perovic, N.M. Gavrilov, I.A. Pašti, A.B. Saponjic, P.J. Vulic, S.D. Karic, B.M. Babic, M.P. Marceta Kaninski, On the tungsten carbide synthesis for PEM fuel cell application – Problems, challenges and advantages. Int. J. Hydrog. Energy 39(21), 11175–11185 (2014)Google Scholar
  14. 14.
    Y.C. Kimmel, X. Xu, W. Yu, X. Yang, J.G. Chen, Trends in Electrochemical Stability of Transition Metal Carbides and Their Potential Use As Supports for Low-Cost Electrocatalysts. ACS Catal. 4(5), 1558–1562 (2014)Google Scholar
  15. 15.
    K. Huang, K. Bi, J.C. Xu, C. Liang, S. Lin, W.J. Wang, T.Z. Yang, Y.X. Du, R. Zhang, H.J. Yang, D.Y. Fan, Y.G. Wang, M. Lei, Novel graphite-carbon encased tungsten carbide nanocomposites by solid-state reaction and their ORR electrocatalytic performance in alkaline medium. Electrochim. Acta 174, 172–177 (2015)Google Scholar
  16. 16.
    U.A. do Rêgo, T. Lopes, J.L. Bott-Neto, A.A. Tanaka, E.A. Ticianelli, Oxygen reduction electrocatalysis on transition metal-nitrogen modified tungsten carbide nanomaterials. J. Electroanal. Chem. 810, 222–231 (2018)Google Scholar
  17. 17.
    S. Bukola, B. Merzougui, A. Akinpelu, M. Zeama, Cobalt and Nitrogen Co-Doped Tungsten Carbide Catalyst for Oxygen Reduction and Hydrogen Evolution Reactions. Electrochim. Acta 190, 1113–1123 (2016)Google Scholar
  18. 18.
    J.G. Chen, Carbide and Nitride Overlayers on Early Transition Metal Surfaces: Preparation, Characterization, and Reactivities. Chem. Rev. 96(4), 1477–1498 (1996)Google Scholar
  19. 19.
    M. Lefèvre, J.P. Dodelet, Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim. Acta 48(19), 2749–2760 (2003)Google Scholar
  20. 20.
    S.H. Liu, J.R. Wu, F.S. Zheng, J.M. Guo, Impact of iron precursors on the properties and activities of carbon-supported Fe-N oxygen reduction catalysts. J. Solid State Electrochem. 19(5), 1381–1391 (2015)Google Scholar
  21. 21.
    C.W.B. Bezerra, L. Zhang, K. Lee, H. Liu, E.P. Marques, H. Wang, J. Zhang, A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 53(15), 4937–4951 (2008)Google Scholar
  22. 22.
    F. Jaouen, J.P. Dodelet, O2Reduction Mechanism on Non-Noble Metal Catalysts for PEM Fuel Cells. Part I: Experimental Rates of O2Electroreduction, H2O2Electroreduction, and H2O2Disproportionation. J. Phys. Chem. C 113(34), 15422–15432 (2009)Google Scholar
  23. 23.
    J.S. Lee, S.T. Oyama, M. Boudart, Molybdenum carbide catalysts I. Synthesis of unsupported powders. J. Catal. 106(1), 125–133 (1987)Google Scholar
  24. 24.
    P.F. Collins, H. Diehl et al., 2,4,6-Tripyridyl-s-triazine as a reagent iron determination of iron in limestone, silicates and refractories. Anal. Chem. 31, 1862–1866 (1959)Google Scholar
  25. 25.
    L.G.R.A. Santos, C.H.F. Oliveira, I.R. Moraes, E.A. Ticianelli, Oxygen reduction reaction in acid medium on Pt–Ni/C prepared by a microemulsion method. J. Electroanal. Chem. 596(2), 141–148 (2006)Google Scholar
  26. 26.
    I. Takahashi, S.S. Kocha, Examination of the activity and durability of PEMFC catalysts in liquid electrolytes. J. Power Sources 195(19), 6312–6322 (2010)Google Scholar
  27. 27.
    T. Ungár, J. Gubicza, G. Ribárik, C. Pantea, T.W. Zerda, Microstructure of carbon blacks determined by X-ray diffraction profile analysis. Carbon N. Y. 40(6), 929–937 (2002)Google Scholar
  28. 28.
    Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon. Carbon N. Y. 45(8), 1686–1695 (2007)Google Scholar
  29. 29.
    T. Denaro, V. Baglio, M. Girolamo, V. Antonucci, A.S. Arico, F. Matteucci, R. Ornelas, Journ Appl. Electrochem 39(11), 2173–2179 (2009)Google Scholar
  30. 30.
    B.L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Adv. Funct. Mater. 19(17), 2782–2789 (2009)Google Scholar
  31. 31.
    M.A.P. Almeida, L.S. Cavalcante, C. Morilla-Santos, C.J. Dalmaschio, S. Rajagopal, M.S. Li, E. Longo, Effect of partial preferential orientation and distortions in octahedral clusters on the photoluminescence properties of FeWO4 nanocrystals. CrystEngComm 14(21), 7127 (2012)Google Scholar
  32. 32.
    K. Jiang, Q. Jia, M. Xu, D. Wu, L. Yang, G. Yang, L. Chen, G. Wang, X. Yang, A novel non-precious metal catalyst synthesized via pyrolysis of polyaniline-coated tungsten carbide particles for oxygen reduction reaction. J. Power Sources 219, 249–252 (2012)Google Scholar
  33. 33.
    A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 56(10), 978–982 (1939)Google Scholar
  34. 34.
    S. Adhikari, D. Sarkar, H.S. Maiti, Synthesis and characterization of WO3 spherical nanoparticles and nanorods. Mater. Res. Bull. 49, 325–330 (2014)Google Scholar
  35. 35.
    Y. Li, C. Guo, J. Li, W. Liao, Z. Li, J. Zhang, C. Chen, Pyrolysis-induced synthesis of iron and nitrogen-containing carbon nanolayers modified graphdiyne nanostructure as a promising core-shell electrocatalyst for oxygen reduction reaction. Carbon N. Y. 119, 201–210 (2017)Google Scholar
  36. 36.
    L. Cao, Z. Lin, J. Huang, X. Yu, X. Wu, B. Zhang, Y. Zhan, F. Xie, W. Zhang, J. Chen, W. Xie, W. Mai, H. Meng, Nitrogen doped amorphous carbon as metal free electrocatalyst for oxygen reduction reaction. Int. J. Hydrog. Energy 42(2), 876–885 (2017)Google Scholar
  37. 37.
    T. Jawhari, A. Roid, J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials. Carbon N. Y. 33(11), 1561–1565 (1995)Google Scholar
  38. 38.
    W. Zhang, Y. Xia, J. Ju, Y. Fan, Z. Fang, L. Wang, Z. Wang, Raman analysis of laser annealed nitrogen doped amorphous carbon film. Solid State Commun. 123(3-4), 97–100 (2002)Google Scholar
  39. 39.
    D. Malko, T. Lopes, E. Symianakis, A.R. Kucernak, The intriguing poison tolerance of non-precious metal oxygen reduction reaction (ORR) catalysts. J. Mater. Chem. A Mater. Energy Sustain. 4(1), 142–152 (2016)Google Scholar
  40. 40.
    W. Ding, Z. Wei, S. Chen, X. Qi, T. Yang, J. Hu, D. Wang, L.-J. Wan, S.F. Alvi, L. Li, Angew. Chem. Int. 52(45), 11755–11759 (2013)Google Scholar
  41. 41.
    J.R. Perls, F. Kapteijn, J.A. Moulijn, Q. Zhu, M. Thomas, Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon N. Y. 33(11), 1641–1653 (1995)Google Scholar
  42. 42.
    I. Kusunoki, M. Sakai, Y. Igari, S. Ishidzuka, T. Takami, XPS study of nitridation of diamond and graphite with a nitrogen ion beam. Surf. Sci. 492(3), 315–328 (2001)Google Scholar
  43. 43.
    J. Liu, P. Song, W. Xu, Structure-activity relationship of doped-nitrogen (N)-based metal-free active sites on carbon for oxygen reduction reaction. Carbon N. Y. 115, 763–772 (2017)Google Scholar
  44. 44.
    K. Wang, Y. Wang, Y. Tong, Z. Pan, S. Song, A Robust Versatile Hybrid Electrocatalyst for the Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 8(43), 29356–29364 (2016)Google Scholar
  45. 45.
    U.I. Koslowski, I. Herrmann, P. Bogdanoff, C. Barkschat, S. Fiechter, N. Iwata, H. Takahashi, H. Nishikori, ECS Trans. 13, 125 (2008)Google Scholar
  46. 46.
    K. Artyushkova, A. Serov, S. Rojas-Carbonell, P. Atanassov, Chemistry of Multitudinous Active Sites for Oxygen Reduction Reaction in Transition Metal–Nitrogen–Carbon Electrocatalysts. J. Phys. Chem. C 119(46), 25917–25928 (2015)Google Scholar
  47. 47.
    T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254(8), 2441–2449 (2008)Google Scholar
  48. 48.
    T. Mathew, N.R. Shiju, V.V. Bokade, B.S. Rao, C.S. Gopinath, Selective Catalytic Synthesis of 2-Ethyl Phenol over Cu1-xCoxFe2O4–Kinetics, Catalysis and XPS Aspects. Catal. Letters 94(3/4), 223–236 (2004)Google Scholar
  49. 49.
    T. Mathew, S. Shylesh, B.M. Devassy, M. Vijayaraj, C.V.V. Satyanarayana, B.S. Rao, C.S. Gopinath, Selective production of orthoalkyl phenols on Cu0.5Co0.5Fe2O4: a study of catalysis and characterization. Appl. Catal. A 273(1-2), 35–45 (2004)Google Scholar
  50. 50.
    B. Zhang, Z. Lin, J. Huang, L. Cao, X. Wu, X. Yu, Y. Zhan, F. Xie, W. Zhang, J. Chen, W. Mai, W. Xie, H. Meng, Highly active and stable non noble metal catalyst for oxygen reduction reaction. Int. J. Hydrog. Energy 42(15), 10423–10434 (2017)Google Scholar
  51. 51.
    A. Velázquez-Palenzuela, L. Zhang, L. Wang, P.L. Cabot, E. Brillas, K. Tsay, J. Zhang, Carbon-Supported Fe–NxCatalysts Synthesized by Pyrolysis of the Fe(II)–2,3,5,6-Tetra(2-pyridyl)pyrazine Complex: Structure, Electrochemical Properties, and Oxygen Reduction Reaction Activity. J. Phys. Chem. C 115(26), 12929–12940 (2011)Google Scholar
  52. 52.
    J. Zhang, J. Chen, Y. Jiang, F. Zhou, G. Wang, R. Wang, Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction. Appl. Surf. Sci. 389, 157–164 (2016)Google Scholar
  53. 53.
    G.-L. Li, C.-D. Liu, S.-M. Chen, C. Hao, G.-C. Cheng, Y.-Y. Xie, Promotion of oxygen reduction performance by Fe 3 O 4 nanoparticles support nitrogen-doped three dimensional meso/macroporous carbon based electrocatalyst. Int. J. Hydrog. Energy 42(7), 4133–4145 (2017)Google Scholar
  54. 54.
    M.C. Weidman, D.V. Esposito, Y.-C.C. Hsu, J.G. Chen, Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range. J. Power Sources 202, 11–17 (2012)Google Scholar
  55. 55.
    M.C. Weidman, D.V. Esposito, I.J. Hsu, J.G. Chenz, Electrochemical Stability of Tungsten and Tungsten Monocarbide (WC) Over Wide pH and Potential Ranges. J. Electrochem. Soc. 157(12), F179 (2010)Google Scholar
  56. 56.
    D. Malko, A. Kucernak, T. Lopes, Performance of Fe–N/C Oxygen Reduction Electrocatalysts toward NO2–, NO, and NH2OH Electroreduction: From Fundamental Insights into the Active Center to a New Method for Environmental Nitrite Destruction. J. Am. Chem. Soc. 138(49), 16056–16068 (2016)Google Scholar
  57. 57.
    T. Lopes, A. Kucernak, D. Malko, E.A. Ticianelli, Mechanistic Insights into the Oxygen Reduction Reaction on Metal-N-C Electrocatalysts under Fuel Cell Conditions. ChemElectroChem 3(10), 1580–1590 (2016)Google Scholar
  58. 58.
    C.H. Choi, W.S. Choi, O. Kasian, A.K. Mechler, M.T. Sougrati, S. Brüller, K. Strickland, Q. Jia, S. Mukerjee, K.J.J. Mayrhofer, F. Jaouen, Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Fe-N-C Catalysts. Angew. Chemie Int. Ed. 56(30), 8809–8812 (2017)Google Scholar
  59. 59.
    H. Meng, W. Ouyang, F. Xie, W. Zhang, J. Chen, D. Yuan, J. Electrochem. Soc. 163, 1373 (2016)Google Scholar
  60. 60.
    P.H. Matter, L. Zhang, U.S. Ozkan, The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J. Catal. 239(1), 83–96 (2006)Google Scholar
  61. 61.
    T. Lopes, P. Olivi, Non-precious Metal Oxygen Reduction Reaction Catalysts Synthesized Via Cyanuric Chloride and N-Ethylamine. Electrocatalysis 5(4), 396–401 (2014)Google Scholar
  62. 62.
    A. Jing Liu, Carbon N. Y. 115, 763 (2017)Google Scholar
  63. 63.
    D. Malko, A. Kucernak, Kinetic isotope effect in the oxygen reduction reaction (ORR) over Fe-N/C catalysts under acidic and alkaline conditions. Electrochem. Commun. 83, 67–71 (2017)Google Scholar
  64. 64.
    D. Banham, S. Ye, Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective. ACS Energy Lett. 2(3), 629–638 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Quimica de Sao CarlosUniversidade de Sao PauloSao PauloBrazil
  2. 2.Universidade Federal do MaranhãoSão LuisBrazil
  3. 3.Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SPSao PauloBrazil

Personalised recommendations