Advertisement

Electrocatalysis

, Volume 10, Issue 1, pp 95–111 | Cite as

Electrodes Based on Zeolites Modified with Cobalt and/or Molybdenum for Pesticide Degradation. Part I: Physicochemical Characterization and Efficiency of the Electrodes for O2 Reduction and H2O2 Production

  • Ana María Méndez-Torres
  • Jorge Castro
  • Francisco Fernández
  • Elizabeth Garrido-Ramírez
  • Néstor Escalona
  • Claudio Gutiérrez
  • José F. Marco
  • M. Soledad Ureta-ZañartuEmail author
Original Research

Abstract

With the purpose of obtaining inexpensive electrodes for the degradation of organic pesticides by the electro-Fenton reaction, the required H2O2 being obtained by the 2-electron reduction of dissolved O2, we have prepared glassy carbon electrodes coated with a mixture of graphite with Mo- and/or Co-modified zeolites. Three zeolites were used, Linde type A (ZA), Faujasite (ZY), and MFI (ZSM5), whose maximum possible cation exchange, directly given by the Al/Si ratio, and their hydrophilicity increases in the order ZSM5 < ZY < ZA. The zeolites were modified with Mo and/or Co by the wet impregnation method and characterized by different techniques. The outer surfaces of the three Mo-modified zeolites showed Mo-containing grains (in ZA) or needles (in ZY and ZSM5), which could be largely washed away with hot water. Electrodes were made by depositing on a disc of glassy carbon (GC) a mixture of graphite, zeolite, and a binder. Quite unexpectedly, the cyclic voltammograms (CVs) of the three Mo-modified zeolites showed at least five pairs of anodic–cathodic peaks, which we assume are due to the presence of the Mo7O246− isopolyoxomolybdate anion, proceeding from the impregnating solution, and anchored on the zeolites’ surface. With a rotating ring-disc electrode, the highest efficiency for H2O2 production at − 0.2 VRHE, namely, 12.7%, was obtained with the GC/graphite-(CoMo-exchanged ZA) electrode, but this efficiency decreased with time. On the contrary, the three zeolites modified only with Mo were stable in 4-h electrolyses at − 0.2 VRHE and yielded the highest H2O2 concentrations, which we attribute to the Mo7O246− isopolyoxomolybdate anchored on the zeolites. The H2O2 yield was the same for the three Mo-modified zeolites, irrespective of their exchange capacity and hydrophobic/hydrophilic character.

Graphical Abstract

Glassy carbon electrodes coated with a mixture of graphite with Mo- and/or Co-modified zeolites have been prepared in order to obtain H2O2 by the 2-electron reduction of dissolved O2. The voltammograms of the Mo-modified zeolites showed five pairs of anodic–cathodic peaks, which we attribute to the presence of the Mo7O246− anion.

Keywords

Oxygen reduction Hydrogen peroxide Mo- and/or Co-modified zeolites Graphite-modified zeolite electrodes Electrolysis 

Notes

Funding Information

This work was supported by CONICYT Chile under Grant FONDECYT-1140207 and FONDEQUIP-EQM 160070 and DICYT-USACH grant 021841UZ. FF acknowledges a MECESUP USA 1555 Grant.

Supplementary material

12678_2018_500_MOESM1_ESM.docx (34 kb)
ESM 1 (DOCX 34 kb)

References

  1. 1.
    I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow. A review. Sci. Pollut. Res. 21(14), 8336–8367 (2014)CrossRefGoogle Scholar
  2. 2.
    E.G. Garrido-Ramírez, M.L. Mora, J.F. Marco, M.S. Ureta-Zañartu, Characterization of nanostructured allophane clays and their use as support of iron species in a heterogeneous electro-Fenton system. Appl. Clay Sc. 86, 153–161 (2013)CrossRefGoogle Scholar
  3. 3.
    E.G. Garrido-Ramírez, J.F. Marco, N. Escalona, M.S. Ureta-Zañartu, Preparation and characterization of bimetallic Fe-Cu allophane nanoclays and their activity in the phenol oxidation by heterogeneous electro-Fenton reaction. Micropor. Mesopor. Mat. 225, 303–311 (2016)CrossRefGoogle Scholar
  4. 4.
    G. Santana-Martínez, G. Roa-Morales, E.M. Del Campo, R. Romero, B.A. Frontana-Uribe, R. Natividad, Electro-Fenton and electro-Fenton-like with in situ electrogeneration of H2O2 and catalyst applied to 4-chlorophenol mineralization. Electrochim. Acta 195, 246 (2016)CrossRefGoogle Scholar
  5. 5.
    A. Doménech-Carbó, Theoretical scenarios for the electrochemistry of porous silicate-based materials: an overview. J. Solid State Electrochem. 19(7), 1887–1903 (2015)CrossRefGoogle Scholar
  6. 6.
    C. Baerlocher, L.B. McCusker, D.H. Olson, Atlas of Zeolites Framework Types, 6th edn. (Elsevier, Amsterdam, 2007)Google Scholar
  7. 7.
    D.R. Rolison, C. Bessel, Electrocatalysis and charge-transfer reactions at redox-modified zeolites. Acc. Chem. Res. 33, 737 (2000)CrossRefGoogle Scholar
  8. 8.
    A. Walcarius, Electroanalytical applications of microporous zeolites and mesoporous (organo)silicas: recent trends. Electroanalysis 20(7), 711–738 (2008)CrossRefGoogle Scholar
  9. 9.
    D. Rolison, Zeolite-modified electrodes and electrode-modified zeolites. Chem. Rev. 90(5), 867–878 (1990)CrossRefGoogle Scholar
  10. 10.
    Z. Mojović, P. Banković, ćN. Jović-Joviči, A. Milutinović-Nikolić, A. Rabi-Stanković, D. Jovanović, Electrocatalytic behavior of nickel impregnated zeolite electrode. Int. J. Hydrog. Energy 36, 13343 (2011)CrossRefGoogle Scholar
  11. 11.
    J.B. Raoof, N. Azizi, R. Ojani, S. Ghodrati, M. Abrishamkar, F. Chekin, Synthesis of ZSM-5 zeolite: electrochemical behavior of carbon paste electrode modified with Ni(II)-zeolite and its application for electrocatalytic oxidation of methanol. Int. J. Hydrog. Energy 36(20), 13295–13300 (2011)CrossRefGoogle Scholar
  12. 12.
    A.A. El-Shafei, A. Alakl, A.M. Ouf, Preparation, characterization and electrochemical behavior of Pd-Au alloy incorporated into zeolites/graphite electrodes. Electroanalysis 26(8), 1810–1815 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Satsuma, D. Yang, K.I. Shimizu, Effect of acidity and pore diameter of zeolites on detection of base molecules by zeolite thick film sensor. Micropor. Mesopor. Mater. 141(1-3), 20–25 (2011)CrossRefGoogle Scholar
  14. 14.
    S.N. Azizi, S. Ghasemi, M. Mikhchian, Microwave-assisted synthesis of NaA nanozeolite from slag and performance of Ag-doped nanozeolite as an efficient material for determination of hydrogen peroxide. RSC Adv. 6(57), 52058–52066 (2016)CrossRefGoogle Scholar
  15. 15.
    Z. Moiovich, L. Iovanovich, S. Mentus, D. Iovanovich, Reduction of oxygen at a NaX–Ag composite electrode and its application to the determination of oxygen in aqueous media. J. Anal. Chem. 65(1), 77–81 (2010)CrossRefGoogle Scholar
  16. 16.
    J.F. Carneiro, L.C. Trevelin, A.S. Lima, G.N. Meloni, M. Bertotti, P. Hammer, R. Bertazzoli, M.R.V. Lanza, Synthesis and characterization of ZrO2/C as electrocatalyst for oxygen reduction to H2O2. Electrocatalysis 8(3), 189–195 (2017)CrossRefGoogle Scholar
  17. 17.
    M.Z. Iqbal, R.J. Kriek, Silver/nickel oxide (Ag/NiO) nanocomposites produced via a citrate sol-gel route as electrocatalyst for the oxygen evolution reaction (OER) in alkaline media. Electrocatalysis 9(3), 279–286 (2018)CrossRefGoogle Scholar
  18. 18.
    O.M. Ama, N. Kumar, F.V. Adams, S.S. Ray, Efficient and cost-effective photoelectrochemical degradation of dyes in wastewater over an exfoliated graphite-MoO3nanocomposite electrode. Electrocatalysis 9(5), 623–631 (2018).  https://doi.org/10.1007/s12678-018-0471-5 CrossRefGoogle Scholar
  19. 19.
    D.P. Debecker, M. Stoyanova, U. Rodemerck, E.M. Gaigneaux, Preparation of MoO3/SiO2–Al2O3 metathesis catalysts via wet impregnation with different Mo precursors. J. Mol. Catal. A Chem. 340(1-2), 65–76 (2011)CrossRefGoogle Scholar
  20. 20.
    V.S. Saji, C.W. Lee, Molybdenum, molybdenum oxides, and their electrochemistry. ChemSusChem 5(7), 1146–1161 (2012)CrossRefGoogle Scholar
  21. 21.
    F. Fernández, C. Berríos, E. Garrido-Ramírez, N. Escalona, C. Gutiérrez, M.S. Ureta-Zañartu, Electrooxidation of 2-chlorophenol and 2,4,6-chlorophenol on glassy carbon electrodes modified with graphite–zeolite mixtures. J. Appl. Electrochem. 44(1295) (2014)Google Scholar
  22. 22.
    K. Kodama, A. Beniya, N. Isomura, Y. Watanabe, Electrochemical observation of high oxophilicity and its effect on oxygen reduction reaction activity of Au clusters mass-selectively deposited on glassy carbon. Electrocatalysis 9(4), 471–479 (2018)CrossRefGoogle Scholar
  23. 23.
    M. Mhamdi, S. Khaddar-Zine, A. Ghorbel, Influence of the cobalt salt precursors on the cobalt speciation and catalytic properties of H-ZSM-5 modified with cobalt by solid-state ion exchange reaction. Appl. Catal. A Gen. 357(1), 42–50 (2009)CrossRefGoogle Scholar
  24. 24.
    D.P. Debecker, M. Stoyanova, U. Rodemerck, A. Léonard, B.L. Su, E.M. Gaigneaux, Genesis of active and inactive species during the preparation of MoO3/SiO2–Al2O3 metathesis catalysts via wet impregnation. Catal. Today 169(1), 60–68 (2011)CrossRefGoogle Scholar
  25. 25.
    J.J. Cruywagen, A.G. Draaijer, J.B.B. Heyns, E.A. Rohwer, Molybdenum(VI) equilibria in different ionic media. Formation constants and thermodynamic quantities. Inorg. Chim. Acta 331(1), 322–329 (2002)CrossRefGoogle Scholar
  26. 26.
    J.J. Cruywagen, Protonation, oligomerization, and condensation reactions of vanadate(V), molybdate(VI), and tungstate(VI). Adv. Inorg. Chem. 49, 127 (1999)CrossRefGoogle Scholar
  27. 27.
    M. Mohai, XPS MultiQuant: multimodel XPS quantification software. Surf. Interface Anal. 36(8), 828–832 (2004)CrossRefGoogle Scholar
  28. 28.
    F.J. Welcher, Standard Methods of Chemical Analysis. 6thed, Vol. 2 (Part B) (Krieger RE Pub Co, New York, 1975) pp 1827Google Scholar
  29. 29.
    K. Kosaka, H. Yamada, S. Matsui, S. Echigo, K. Shishida, Comparison among the methods for hydrogen peroxide measurements to evaluate advanced oxidation processes: application of a spectrophotometric method using copper(II) ion and 2,9-dimethyl-1,10-phenanthroline, Environ. Sci. Technol. Lett. 3821–3824, 32 (1998)Google Scholar
  30. 30.
    S. Pourbeyram, M. Moosavifar, V. Hasanzadeh, Electrochemical characterization of the encapsulated polyoxometalates (POMs) into the zeolite. J. Electroanal. Chem. 714–715, 19 (2014)CrossRefGoogle Scholar
  31. 31.
    M.H. Tran, H. Ohkita, T. Mizushima, N. Kakuta, Hydrothermal synthesis of molybdenum oxide catalyst: heteropoly acids encaged in US-Y. Appl. Catal. A Gen. 287(1), 129–134 (2005)CrossRefGoogle Scholar
  32. 32.
    M.M.J. Treacy, J.B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites. Published on behalf of the Structure Commission of the International Zeolite Association, 4th ed (Elsevier, Oxford, 2001) p 250Google Scholar
  33. 33.
    K.B. Klepper, O. Nilsen, H. Fjellvåg, Epitaxial growth of cobalt oxide by atomic layer deposition. J. Crystal. Growth 307(2), 457–465 (2007)CrossRefGoogle Scholar
  34. 34.
    W. Yuan, J. Zhang, D. Xie, Z. Dong, Q. Su, G. Du, Porous CoO/C polyhedra as anode material for Li-ion batteries. Electrochim. Acta 108, 506–511 (2013)CrossRefGoogle Scholar
  35. 35.
    W. Pan, R. Tian, H. Jin, Y. Guo, L. Zhang, X. Wu, L. Zhang, Z. Han, G. Liu, J. Li, G. Rao, H. Wang, W. Chu, Structure, optical, and catalytic properties of novel hexagonal metastable h-MoO3nano- and microrods synthesized with modified liquid-phase processes. Chem. Mater. 22, 6202 (2010)CrossRefGoogle Scholar
  36. 36.
    J. Song, X. Ni, L. Gao, H. Zheng, Synthesis of metastable h-MoO3 by simple chemical precipitation. Mater. Chem. Phys. 102(2–3), 245–248 (2007)CrossRefGoogle Scholar
  37. 37.
    J. Zhou, N. Lin, L. Wang, K. Zhang, Y. Zhou, Y. Qian, Synthesis of hexagonal MoO3 nanorods and their electrochemical performance as anode materials for lithium-ion battery. J. Mat. Chem. A3(7463) (2015)Google Scholar
  38. 38.
    M. Gracia, J.F. Marco, J.R. Gancedo, W. Exel, W. Meisel, Surface spectroscopic study of the corrosion of ultrathin 57Fe-evaporated and Langmuir-Blodgett films in humid SO2 environments. Surf. Interf. Anal. 29, 82 (2000)CrossRefGoogle Scholar
  39. 39.
    J.F. Marco, J.R. Gancedo, J. Ortiz, J.L. Gautier, Characterization of the spinel-related oxides NixCo3−xO4 (x=0.3,1.3,1.8) prepared by spray pyrolysis at 350 °C. Appl. Surf. Sci. 227, 175 (2004)CrossRefGoogle Scholar
  40. 40.
    C. Chupin, A.C. van Veen, M. Konduru, J. Després, C. Mirodatos, Identity and location of active species for NO reduction by CH4 over Co-ZSM-5, J. Catal. 241, 103 (2006)Google Scholar
  41. 41.
    Q. Tang, Q. Zhang, P. Wang, Y. Wang, H. Wan, Characterizations of cobalt oxide nanoparticles within Faujasite zeolites and the formation of metallic cobalt. Chem. Mater. 16(10), 1967–1976 (2004)CrossRefGoogle Scholar
  42. 42.
    Y. Zhou, Q. Liu, D. Liu, H. Xie, G. Wu, W. Huang, Y. Tian, Q. He, A. Khalil, Y.A. Haleem, T. Xiang, W. Chu, C. Zou, L. Song, Carbon-coated MoO2 dispersed in three-dimensional graphene aerogel for lithium-ion battery. Electrochim. Acta 174, 8–14 (2015)CrossRefGoogle Scholar
  43. 43.
    J. Baltrusaitis, B. Mendoza-Sanchez, V. Fernández, R. Veenstra, N. Dukstiene, A. Roberts, N. Fairley, Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. Appl. Surf. Sci. 326, 151–161 (2015)CrossRefGoogle Scholar
  44. 44.
    V. Crupi, D. Majolino, F. Longo, P. Migliardo, V. Venuti, FTIR/ATR study of water encapsulated in Na-A and Mg-exchanged A-zeolites. Vib. Spectrosc. 42(2), 375–380 (2006)CrossRefGoogle Scholar
  45. 45.
    L. Ohlin, P. Bazin, F. Thibault-Starzyk, J. Hedlund, M. Grahn, Adsorption of CO2, CH4, and H2O in zeolite ZSM-5 studied using in situ ATR-FTIR spectroscopy. J. Phys. Chem. C 117, 16972 (2013)CrossRefGoogle Scholar
  46. 46.
    T. Montanari, O. Marie, M. Daturi, G. Busca, Cobalt on and in zeolites and silica–alumina: spectroscopic characterization and reactivity. Catal. Today 110(3–4), 339–344 (2005)CrossRefGoogle Scholar
  47. 47.
    F. Geobaldo, B. Onida, P. Rivolo, F. Di Renzo, F. Fajula, E. Garrone, Catal. Today 70, 107 (2001)CrossRefGoogle Scholar
  48. 48.
    G. Li, FT-IR studies of zeolite materials: characterization and environmental applications. PhD thesis, University of Iowa, http://ir.uiowa.edu/etd/96(2005)
  49. 49.
    D.H. Olson, The crystal structure of dehydrated NaX. Zeolites 15(5), 439–443 (1995)CrossRefGoogle Scholar
  50. 50.
    Y. Zhao, F. Li, Z. Sun, Y. Zhang, L. Xu, A novel oxidation state Keggin-type isopolyoxomolybdate (C3H5N2)4H[MoVI 0.5MoVI 12O40]: synthesis, structural characterization and electrocatalytic properties, Inorg. Chem. Commun. 70, 83 (2016)Google Scholar
  51. 51.
    A. Sharma, S.K. Mehta, S. Singh, S. Gupta, Synthesized colloidal-supported Pt and bimetallic Pt–Mo nanoparticles as electrocatalyst in oxidation of methanol in alkaline solution. J. Appl. Electrochem. 46(1), 27–38 (2016)CrossRefGoogle Scholar
  52. 52.
    C.V. Krishnan, M. Garnett, B. Hsiao, B. Chu, Electrochemical measurements of isopolyoxomolybdates: 1. pH dependent behavior of sodium molybdate. Int. J. Electrochem. Sci. 2, 29 (2007)Google Scholar
  53. 53.
    J. Jońca, C. Barus, W. Giraud, D. Thouron, V. Garçon, M. Comtat, Electrochemical behaviour of isopoly- and heteropolyoxomolybdates formed during anodic oxidation of molybdenum in seawater. Int. J. Electrochem. Sci. 7(7325) (2012)Google Scholar
  54. 54.
    P. Enghag, Encyclopaedia of the Elements, (Wiley-VCH, Weinheim, 2004) p. 590Google Scholar
  55. 55.
    C.H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, (Wiley-VCH, Weinheim, 2007) p 257Google Scholar
  56. 56.
    R. Zhou, Y. Zheng, M. Jaroniec, S.Z. Qiao, Determination of the electron transfer number for the oxygen reduction reaction: from theory to experiment. ACS Catal. 6(7), 4720–4728 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ana María Méndez-Torres
    • 1
    • 2
  • Jorge Castro
    • 2
    • 3
  • Francisco Fernández
    • 2
  • Elizabeth Garrido-Ramírez
    • 4
    • 5
  • Néstor Escalona
    • 6
    • 7
  • Claudio Gutiérrez
    • 8
  • José F. Marco
    • 8
  • M. Soledad Ureta-Zañartu
    • 2
  1. 1.Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
  2. 2.Departamento de Ciencias del Ambiente, Facultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile
  3. 3.Facultad de CienciasUniversidad de ChileSantiagoChile
  4. 4.Departamento de Ecología y BiodiversidadUniversidad Andres BelloSantiagoChile
  5. 5.Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la VidaUniversidad Andres BelloSantiagoChile
  6. 6.Departamento de Ingeniería Química y Bíoprocesos, Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
  7. 7.Departamento de Química Física, Facultad de QuímicasPontificia Universidad Católica de ChileSantiagoChile
  8. 8.Instituto de Química Física “Rocasolano”, CSICMadridSpain

Personalised recommendations