, Volume 10, Issue 1, pp 82–94 | Cite as

First Assessments of the Influence of Oxygen Reduction on the Glycerol Electrooxidation Reaction on Pt

  • Amanda A. Nascimento
  • Leticia M. Alencar
  • Cinthia R. Zanata
  • Erico Teixeira-Neto
  • Ana P. M. Mangini
  • Giuseppe A. Camara
  • Magno A. G. Trindade
  • Cauê A. MartinsEmail author
Original Research


The electroactivity of new nanomaterials candidates to be used as anodes for glycerol fuel cells or electrolysers has been largely investigated, but most of the literature reports the use of O2-free solutions. However, the purging process to extract O2 from glycerol solution and the storage at similar condition is costly. Moreover, the lack of knowledge on the glycerol electrooxidation reaction (GEOR) in the presence of O2 prevents alternative applications, as that in single channel microfluidic fuel cells, when the anode must be selective for the alcohol oxidation in the presence of O2. Herein, we accessed the influence of the oxygen reduction reaction on the GEOR by using a flow system with an electrode in wall-jet configuration. The GEOR is investigated on Pt/C nanoparticles (NPs) in the presence of different amounts of O2 in solution as a proof of concept. We also used synthesized Pt@Au to apply the method for a new material candidate to be used as catalyst in glycerol technologies. The presence of oxygen in solution barely influences GEOR on Pt/C or Pt@Au whenever classic stationary measurements are used. We found comparable electrocatalytic parameters and the same carbonyl products, but at slightly different proportions, in the presence or absence of O2 after long-time electrolysis followed by chromatographic analysis. On the other hand, oxygen competes with glycerol by the active sites when the reactants are convectively forced towards the electrode surface, at flow configuration. The competition between GEOR and oxygen reduction results in a net cathodic current density when using O2-saturated glycerol solution at potentials suitable for the reduction reaction on Pt/C. Pt@Au shows remarkable activity for the oxygen reduction, producing high cathodic currents even in air-saturated glycerol solution. Moreover, the presence of O2 greatly decreases the stability of Pt@Au during GEOR, mainly due to the improved oxygen reduction and extended surface accessed by O2, while same material controversially displayed good stability in N2-saturated solution. The use of flow configuration shed a light on the influence of O2 on GEOR, providing new information non-accessible by other classic stationary methods.

Graphical Abstract


Glycerol electrooxidation reaction Oxygen reduction Stationary system Flow system Electroactive material 



We thank LNNano-CNPEM (Campinas, Brazil) for the use of the JEOL JEM 2100F microscope.

Funding Information

The study received financial assistance from CNPq (Grant Nos. 454516/2014-2, 309176/2015-8, and 406779/2016-3), FUNDECT (Grants Nos. 026/2015 and 099/2016), and CAPES and FINEP.

Supplementary material

12678_2018_499_MOESM1_ESM.docx (1.9 mb)
ESM 1 (DOCX 1975 kb)


  1. 1.
    A. Marchionni, M. Bevilacqua, C. Bianchini, Y.-X. Chen, J. Filippi, P. Fornasiero, A. Lavacchi, H. Miller, L. Wang, F. Vizza, Electrooxidation of ethylene glycol and glycerol on Pd-(Ni-Zn)/C anodes in direct alcohol fuel cells. ChemSusChem 6(3), 518–528 (2013)CrossRefGoogle Scholar
  2. 2.
    Z. Wang, L. Xin, X. Zhao, Y. Qiu, Z. Zhang, O.A. Baturina, W. Li, Carbon supported Ag nanoparticles with different particle size as cathode catalysts for anion exchange membrane direct glycerol fuel cells. Renew. Energy 62, 556–562 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Maya-Cornejo, M. Guerra-Balcázar, N. Arjona, L. Álvarez-Contreras, F.J. Rodríguez Valadez, M.P. Gurrola, J. Ledesma-García, L.G. Arriaga, Electrooxidation of crude glycerol as waste from biodiesel in a nanofluidic fuel cell using Cu@Pd/C and Cu@Pt/C. Fuel 183, 195–205 (2016)CrossRefGoogle Scholar
  4. 4.
    C.A. Martins, O.A. Ibrahim, P. Pei, E. Kjeang, “Bleaching” glycerol in a microfluidic fuel cell to produce high power density at minimal cost. Chem. Commun. 54(2), 192–195 (2018)CrossRefGoogle Scholar
  5. 5.
    C.A. Martins, O.A. Ibrahim, P. Pei, E. Kjeang, Towards a fuel-flexible direct alcohol microfluidic fuel cell with flow-through porous electrodes: assessment of methanol, ethylene glycol and glycerol fuels. Electrochim. Acta 271, 537–543 (2018)CrossRefGoogle Scholar
  6. 6.
    A.T. Marshall, R.G. Haverkamp, Production of hydrogen by the electrochemical reforming of glycerol–water solutions in a PEM electrolysis cell. Int. J. Hydrog. Energy 33(17), 4649–4654 (2008)CrossRefGoogle Scholar
  7. 7.
    J. González-Cobos, S. Baranton, C. Coutanceau, Development of bismuth-modified PtPd nanocatalysts for the electrochemical reforming of polyols into hydrogen and value-added chemicals. ChemElectroChem 3(10), 1694–1704 (2016)CrossRefGoogle Scholar
  8. 8.
    K.-E. Guima, L.M. Alencar, G.C. da Silva, M.A.G. Trindade, C.A. Martins, 3D-printed electrolyzer for the conversion of glycerol into tartronate on Pd nanocubes. ACS Sustain. Chem. Eng. 6(1), 1202–1207 (2018)CrossRefGoogle Scholar
  9. 9.
    C.A. Martins, P.S. Fernández, G.A. Camara, in In Increased Biodiesel Effic. Alternative Uses for Biodiesel Byproduct: Glycerol as Source of Energy and High Valuable Chemicals (Springer, Cham, 2018), pp. 159–186CrossRefGoogle Scholar
  10. 10.
    C.R. Zanata, P.S. Fernández, H.E. Troiani, A.L. Soldati, R. Landers, G.A. Camara, A.E. Carvalho, C.A. Martins, Rh-decorated PtIrOx nanoparticles for glycerol electrooxidation: searching for a stable and active catalyst. Appl. Catal. B Environ. 181, 445–455 (2016)CrossRefGoogle Scholar
  11. 11.
    G.L. Caneppele, T.S. Almeida, C.R. Zanata, É. Teixeira-Neto, P.S. Fernández, G.A. Camara, C.A. Martins, Exponential improving in the activity of Pt/C nanoparticles towards glycerol electrooxidation by Sb ad-atoms deposition. Appl. Catal. B Environ. 200, 114–120 (2017)CrossRefGoogle Scholar
  12. 12.
    L. Huang, J.-Y. Sun, S.-H. Cao, M. Zhan, Z.-R. Ni, H.-J. Sun, Z. Chen, Z.-Y. Zhou, E.G. Sorte, Y.J. Tong, S.-G. Sun, Combined EC-NMR and in situ FTIR spectroscopic studies of glycerol electrooxidation on Pt/C, PtRu/C, and PtRh/C. ACS Catal. 6(11), 7686–7695 (2016)CrossRefGoogle Scholar
  13. 13.
    L. Thia, M. Xie, Z. Liu, X. Ge, Y. Lu, W.E. Fong, X. Wang, Copper-modified gold nanoparticles as highly selective catalysts for glycerol electro-oxidation in alkaline solution. ChemCatChem 8(20), 3272–3278 (2016)CrossRefGoogle Scholar
  14. 14.
    L.M. Palma, T.S. Almeida, C. Morais, T.W. Napporn, K.B. Kokoh, A.R. de Andrade, Effect of co-catalyst on the selective electrooxidation of glycerol over ruthenium-based nanomaterials. ChemElectroChem 4(1), 39–45 (2017)CrossRefGoogle Scholar
  15. 15.
    R.G. Da Silva, S. Aquino Neto, K.B. Kokoh, A.R. De Andrade, Electroconversion of glycerol in alkaline medium: from generation of energy to formation of value-added products. J. Power Sources 351, 174–182 (2017)CrossRefGoogle Scholar
  16. 16.
    O.O. Fashedemi, H.A. Miller, A. Marchionni, F. Vizza, K.I. Ozoemena, Electro-oxidation of ethylene glycol and glycerol at palladium-decorated FeCo@Fe core–shell nanocatalysts for alkaline direct alcohol fuel cells: functionalized MWCNT supports and impact on product selectivity. J. Mater. Chem. A 3(13), 7145–7156 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Kwon, T.J.P. Hersbach, M.T.M. Koper, Electro-oxidation of glycerol on platinum modified by adatoms: activity and selectivity effects. Top. Catal. 57(14-16), 1272–1276 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Kwon, Y. Birdja, I. Spanos, P. Rodriguez, M.T.M. Koper, Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth. ACS Catal. 2(5), 759–764 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Lee, H.J. Kim, E.J. Lim, Y. Kim, Y. Noh, G.W. Huber, W.B. Kim, Highly selective transformation of glycerol to dihydroxyacetone without using oxidants by a PtSb/C-catalyzed electrooxidation process. Green Chem. 18(9), 2877–2887 (2016)CrossRefGoogle Scholar
  20. 20.
    L.M. Palma, T.S. Almeida, V.L. Oliveira, G. Tremiliosi-Filho, E.R. Gonzalez, A.R. de Andrade, K. Servat, C. Morais, T.W. Napporn, K.B. Kokoh, Identification of chemicals resulted in selective glycerol conversion as sustainable fuel on Pd-based anode nanocatalysts. RSC Adv. 4(110), 64476–64483 (2014)CrossRefGoogle Scholar
  21. 21.
    H. Wang, L. Thia, N. Li, X. Ge, Z. Liu, X. Wang, Pd nanoparticles on carbon nitride–graphene for the selective electro-oxidation of glycerol in alkaline solution. ACS Catal. 5(6), 3174–3180 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Holade, C. Morais, K. Servat, T.W. Napporn, K.B. Kokoh, Toward the electrochemical valorization of glycerol: Fourier transform infrared spectroscopic and chromatographic studies. ACS Catal. 3(10), 2403–2411 (2013)CrossRefGoogle Scholar
  23. 23.
    A. Zalineeva, S. Baranton, C. Coutanceau, Bi-modified palladium nanocubes for glycerol electrooxidation. Electrochem. Commun. 34, 335–338 (2013)CrossRefGoogle Scholar
  24. 24.
    J.C. Abrego-Martínez, A. Moreno-Zuria, F.M. Cuevas-Muñiz, L.G. Arriaga, S. Sun, M. Mohamedi, Design, fabrication and performance of a mixed-reactant membraneless micro direct methanol fuel cell stack. J. Power Sources 371, 10–17 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016)CrossRefGoogle Scholar
  26. 26.
    P.S. Fernández, C.A. Martins, C.A. Angelucci, J.F. Gomes, G.A. Camara, M.E. Martins, G. Tremiliosi-Filho, Evidence for independent glycerol electrooxidation behavior on different ordered domains of polycrystalline platinum. ChemElectroChem 2(2), 263–268 (2015)CrossRefGoogle Scholar
  27. 27.
    S. Fonseca, G.L. Caneppele, R. Backes, B.D. Ferreira, R.A.B. da Silva, C.A. Martins, Modified-screen printed electrode in flow system for measuring the electroactivity of nanoparticles towards alcohol electrooxidation. J. Electroanal. Chem. 789, 38–43 (2017)CrossRefGoogle Scholar
  28. 28.
    G. Frens, Nature 241, 20 (1973)Google Scholar
  29. 29.
    L. Lu, G. Sun, H. Zhang, H. Wang, S. Xi, J. Hu, Z. Tian, and R. Chen, (2004), Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate Electronic supplementary information (ESI) available: AFM image and line scans of core-shell Au-Pt nanoparticle film (colour version of Fig. 4). J. Mater. Chem. 614, 1005. See
  30. 30.
    A.C. Garcia, M.J. Kolb, C. van Nierop y Sanchez, Y.Y. Jan Vos, Y. Birdja, Y. Kwon, G. Tremiliosi-Filho, M.T.M. Koper, Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electro-oxidation of glycerol. ACS Catal. 6(7), 4491–4500 (2016)CrossRefGoogle Scholar
  31. 31.
    F.J. Vidal-Iglesias, R.M. Arán-Ais, J. Solla-Gullón, E. Herrero, J.M. Feliu, Electrochemical characterization of shape-controlled Pt nanoparticles in different supporting electrolytes. ACS Catal. 2(5), 901–910 (2012)CrossRefGoogle Scholar
  32. 32.
    A. Zadick, L. Dubau, N. Sergent, G. Berthomé, M. Chatenet, Huge instability of Pt/C catalysts in alkaline medium. ACS Catal. 5(8), 4819–4824 (2015)CrossRefGoogle Scholar
  33. 33.
    J.F. Gomes, C.A. Martins, M.J. Giz, G. Tremiliosi-Filho, G.A. Camara, Insights into the adsorption and electro-oxidation of glycerol: Self-inhibition and concentration effects. J. Catal. 301, 154–161 (2013)CrossRefGoogle Scholar
  34. 34.
    G. Selvarani, S.V. Selvaganesh, S. Krishnamurthy, G.V.M. Kiruthika, P. Sridhar, S. Pitchumani, A.K. Shukla, A methanol-tolerant carbon-supported Pt−Au alloy cathode catalyst for direct methanol fuel cells and its evaluation by DFT. J. Phys. Chem. C 113(17), 7461–7468 (2009)CrossRefGoogle Scholar
  35. 35.
    A.U. Nilekar, S. Alayoglu, B. Eichhorn, M. Mavrikakis, Preferential CO oxidation in hydrogen: reactivity of core−shell nanoparticles. J. Am. Chem. Soc. 132(21), 7418–7428 (2010)CrossRefGoogle Scholar
  36. 36.
    P.S. Fernández, J. Fernandes Gomes, C.A. Angelucci, P. Tereshchuk, C.A. Martins, G.A. Camara, M.E. Martins, J.L.F. Da Silva, G. Tremiliosi-Filho, Establishing a link between well-ordered Pt(100) surfaces and real systems: how do random superficial defects influence the electro-oxidation of glycerol. ACS Catal. 5(7), 4227–4236 (2015)CrossRefGoogle Scholar
  37. 37.
    P.S. Fernández, P. Tereshchuk, C.A. Angelucci, J.F. Gomes, A.C. Garcia, C.A. Martins, G.A. Camara, M.E. Martins, J.L.F. Da Silva, G. Tremiliosi-Filho, How do random superficial defects influence the electro-oxidation of glycerol on Pt(111) surfaces? Phys. Chem. Chem. Phys. 18(36), 25582–25591 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Amanda A. Nascimento
    • 1
  • Leticia M. Alencar
    • 1
  • Cinthia R. Zanata
    • 1
    • 2
  • Erico Teixeira-Neto
    • 3
  • Ana P. M. Mangini
    • 2
  • Giuseppe A. Camara
    • 2
  • Magno A. G. Trindade
    • 1
  • Cauê A. Martins
    • 1
    • 4
    Email author return OK on get
  1. 1.Faculty of Exact Sciences and TechnologyFederal University of Grande DouradosDouradosBrazil
  2. 2.Institute of ChemistryFederal University of Mato Grosso do SulCampo GrandeBrazil
  3. 3.Brazilian Nanotechnology National Laboratory (LNNano)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
  4. 4.Physics InstituteFederal University of Mato Grosso do Sul – Av. Costa e SilvaCampo GrandeBrazil

Personalised recommendations