, Volume 10, Issue 1, pp 63–71 | Cite as

Layered Nickel-Cobalt Oxide Coatings on Stainless Steel as an Electrocatalyst for Oxygen Evolution Reaction

  • Ieva BarauskienėEmail author
  • Eugenijus Valatka
Original Research


In this work, we have obtained spinel-type nickel-cobalt oxide nanostructures on low-cost and easy-handling AISI304-type stainless steel substrate via simple potentiostatic electrodeposition. Nickel and cobalt hydroxide layers were formed by varying the deposition potential at the same time intervals (− 1.15 V for Ni(OH)2 and − 0.85 V for Co(OH)2). An electrolyte bath containing 0.05 M Ni(NO3)2, 0.05 M Co(NO3)2, and 0.1 M KNO3 was used for the electrodeposition. Structural analysis confirmed the formation of a spinel NiCo2O4 after thermal treatment. The influence of annealing temperature in the range of 473–1073 K on the films activity in OER has been investigated using 0.1 M NaOH. Nickel-cobalt oxide coatings demonstrated OER activity close to the benchmark IrO2 with the onset potential value of + 1.6 (vs. RHE), overpotential of 530 mV at 10 mA cm−2, and Tafel slope of 49 mV dec−1. Meanwhile, the electrocatalytic activity of separate Co3O4 and NiO is far smaller.

Graphical Abstract


Nickel cobalt oxide Spinel Oxygen evolution Electrocatalysis 


  1. 1.
    R. Kothari, D. Buddhi, R.L. Sawhney, Renew Sust Energ Rev 12, 2 (2008)CrossRefGoogle Scholar
  2. 2.
    J. Turner, G. Sverdrup, M.K. Mann, P.C. Maness, B. Kroposki, M. Ghirardi, et al., Int J Energy Res 32, 5 (2008)CrossRefGoogle Scholar
  3. 3.
    D.F. Dominkovic, I. Bacekovic, A.S. Pedersen, G. Krajacic, Renew Sust Energ Rev 82, 2 (2018)CrossRefGoogle Scholar
  4. 4.
    T. Abbasi, S.A. Abbasi, Renew Sust Energ Rev 15, 6 (2011)Google Scholar
  5. 5.
    K. Nath, D. Das, Production and storage of hydrogen: present scenario and future perspective. J. Sci. Ind. Res. 66, 701–709 (2007)Google Scholar
  6. 6.
    I. Vincent, D. Bessarabov, Renew Sust Energ Rev 81, 2 (2018)CrossRefGoogle Scholar
  7. 7.
    J.D. Holladay, J. Hu, D.L. King, Y. Wang, Catal Today 139, 4 (2009)CrossRefGoogle Scholar
  8. 8.
    L. Trotochaud, S.W. Boettcher, Precise oxygen evolution catalysts: status and opportunities. Scr Mater 74, 25–32 (2014)CrossRefGoogle Scholar
  9. 9.
    Y. Cheng, S.P. Jiang, Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Prog. Nat. Sci.: Mater. Int. 25, 545–553 (2015)Google Scholar
  10. 10.
    Q. Cheng, J. Tang, H. Zhang, L.C. Qin, Vertically aligned cobalt hydroxide nano-flake coated electroetched carbon fiber cloth electrodes for supercapacitors. Chem. Phys. Lett. 616–617, 35–39 (2014)Google Scholar
  11. 11.
    A. Fernando, J Phys Chem C 119, 20 (2015)Google Scholar
  12. 12.
    G.S. Hutchings, Y. Zhang, J. Li, B.T. Yonemoto, X. Zhou, K. Zhu, et al., J Am Chem Soc 137, 12 (2015)CrossRefGoogle Scholar
  13. 13.
    P.W. Menezes, A. Indra, D. Gonzalez-Flores, N.R. Sahraie, I. Zaharieva, M. Schwarze, et al., ACS Catal 5, 4 (2015)CrossRefGoogle Scholar
  14. 14.
    H.S. Ahn, J. Yano, T.D. Tilley, ACS Catal 5, 4 (2015)Google Scholar
  15. 15.
    F. He, K. Liu, J. Zhong, S. Zhang, Q. Huang, C. Chen, One dimensional nickel oxide-decorated cobalt oxide (Co3O4) composites for high-performance supercapacitors. J Electroanal Chem 749, 89–95 (2015)CrossRefGoogle Scholar
  16. 16.
    W.J. Zhou, D.D. Zhao, M.W. Xu, C.L. Xu, H.L. Li, Effects of the electrodeposition potential and temperature on the electrochemical capacitance behavior of ordered mesoporous cobalt hydroxide films. Electrochim. Acta. 53, 7210–7219 (2008)Google Scholar
  17. 17.
    D. Coviello, M. Contursi, R. Toniolo, I.G. Casella, Electrochemical and spectroscopic investigation of a binary Ni-Co oxide active material deposited on graphene/polyvinyl alcohol composite substrate. J Electroanal Chem 791, 117–123 (2017)CrossRefGoogle Scholar
  18. 18.
    A. Adan-Mas, R.G. Duarte, T.M. Silva, L. Guerlou-Demourgues, M.F.G. Montemor, Enhancement of the Ni-Co hydroxide response as energy storage material by electrochemically reduced graphene oxide. Electrochim Acta 240, 323–340 (2017)CrossRefGoogle Scholar
  19. 19.
    L. Jiang, Y. Sui, J. Qi, Y. Chang, Y. He, Q. Meng, F. Wei Z. Sun, Y. Jin, Hierarchical Ni-Co layered double hydroxide nanosheets on functionalized 3D-RGO films for high energy density asymmetric supercapacitor. Appl. Surf. Sci. 426, 148–159, (2017)Google Scholar
  20. 20.
    A. Balram, H. Zhang, S. Santhanagopalan, ACS Appl Mater Interfaces 9, 34 (2017)CrossRefGoogle Scholar
  21. 21.
    T. Nguyen, M. Boudard, J.M. Carmezim, M.F. Montemor, Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors. Sci. Report. 7, 39980 (2017)Google Scholar
  22. 22.
    S. Sun, Z.J. Xu, Composition dependence of methanol oxidation activity in nickel-cobalt hydroxides and oxides: an optimization toward highly active electrodes. Electrochimica Acta. 165, 56–66 (2015)Google Scholar
  23. 23.
    Y. Wang, K. Cheng, D. Cao, F. Yang, P. Yan, W. Zhang, et al., Fuel Cells 15, 2 (2015)CrossRefGoogle Scholar
  24. 24.
    V.H. Nguyen, J.J. Shim, Three-dimensional nickel foam/graphene/NiCo 2 O 4 as high-performance electrodes for supercapacitors. J Power Sources 273, 110–117 (2015)CrossRefGoogle Scholar
  25. 25.
    A. Banu, M. Marcu, E. Alexandrescu, E.M. Anghel, J Solid State Electrochem 18, 10 (2014)CrossRefGoogle Scholar
  26. 26.
    Z. Zeng, B. Xiao, X. Zhu, J. Zhu, D. Xiao, J. Zhu, Flower-like binary cobalt-nickel oxide with high performance for supercapacitor electrode via cathodic electrodeposition. Ceram. Int. 43, S633–S638 (2017)Google Scholar
  27. 27.
    S. Anantharaj, M. Venkatesh, A.S. Salunke, T.V.S.V. Simha, V. Prabu, S. Kundu, High-performance oxygen evolution anode from stainless steel via controlled surface oxidation and Cr removal. ACS Sustain Chem Eng 5(11), 10072–10083 (2017)CrossRefGoogle Scholar
  28. 28.
    G.H.A. Therese, P.V. Kamath, Chem Mater 12, 5 (2000)CrossRefGoogle Scholar
  29. 29.
    R.S. Jayashree, P. Vishnu Kamath, Nickel hydroxide electrodeposition from nickel nitrate solutions: mechanistic studies. J Power Sources 93(1-2), 273–278 (2001)CrossRefGoogle Scholar
  30. 30.
    Y. Zhu, H. Li, A. Gedanken, Preparation of nanosized cobalt hydroxides and oxyhydroxides assisted by sonication. J. Mater. Chem. 12, 729–733 (2002)Google Scholar
  31. 31.
    J. Yang, H. Liu, W.N. Martens, R.L. Frost, Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J. Phys. Chem. 114, 111–119 (2010)Google Scholar
  32. 32.
    T. Pauporte, L. Mendoza, M. Cassir, M.C. Bernard, J. Chivot, J Electrochem Soc 152, 2 (2005)CrossRefGoogle Scholar
  33. 33.
    N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46(2), 337–365 (2017)CrossRefGoogle Scholar
  34. 34.
    J.R.S. Brownson, C. Levy-Clement, Phys Status Solidi 245, 9 (2008)CrossRefGoogle Scholar
  35. 35.
    J. Ismail, M.F. Ahmed, P.V. Kamath, G.N. Subbanna, S. Uma, J. Gopalakrishnan, Organic additive-mediated synthesis of novel cobalt(II) hydroxides. J Solid State Chem 114(2), 550–555 (1995)CrossRefGoogle Scholar
  36. 36.
    Z. Liu, R. Ma, M. Osada, K. Takada, T. Sasaki, J Am Chem Soc 127, 40 (2005)CrossRefGoogle Scholar
  37. 37.
    R.L. Doyle, I.J. Godwin, M.P. Brandon, M.E.G. Lyons, Phys Chem Chem Phys 15, 33 (2013)Google Scholar
  38. 38.
    V. Gupta, T. Kusahara, H. Toyama, S. Gupta, N. Miura, Electrochem Commun 9, 9 (2007)CrossRefGoogle Scholar
  39. 39.
    B. Raveau, M. Seikh, in Cobalt oxides: from crystal chemistry to physics, 1st edn.. Electronic and magnetic properties of cobaltites with a 3D “triangular lattice” (Wiley-VCH Verlag GmbH & Co. KGaA, Germany, 2012), pp. 211–231CrossRefGoogle Scholar
  40. 40.
    E. Umeshbabu, G. Rajeshkhanna, P. Justin, G. Ranga Rao, Magnetic, optical and electrocatalytic properties of urchin and sheaf-like NiCo2O4 nanostructures. Mater Chem Phys 165, 235–244 (2015)CrossRefGoogle Scholar
  41. 41.
    D. Li, F. Yu, Z. Yu, X. Sun, Y. Li, Three-dimensional flower-like Co(OH)2 microspheres of nanoflakes/nanorods assembled on nickel foam as binder-free electrodes for High performance supercapacitors. Mater. Lett. 158, 17–20 (2015)Google Scholar
  42. 42.
    D.S. Hall, D.J. Lockwood, C. Bock, B.R. MacDougall, Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A. 471, 20140792 (2014)Google Scholar
  43. 43.
    V.G. Hadjiev, M.N. Iliev, I.V. Vergilov, The Raman spectra of Co3O4. J. Phys. C Solid State Phys. 21, L199–L201 (1988)Google Scholar
  44. 44.
    Y. Li, W. Qiu, F. Qin, H. Fang, V.G. Hadjiev, D. Litvinov, J. Bao, Identification of cobalt oxides with Raman scattering and Fourier transform infrared spectroscopy. J. Phys. Chem. C. 120, 4511–4516 (2016)Google Scholar
  45. 45.
    X. He, X. Song, W. Qiao, Z. Li, X. Zhang, S. Yan, W. Zhong, Y. Du, Phase- and size-dependent optical and magnetic properties of CoO nanoparticles. J. Phys. Chem. C. 119, 9550–9559 (2015)Google Scholar
  46. 46.
    Y. Chuminjak, S. Daothong, A. Kuntarug, D. Phokharatkul, M. Horprathum, A. Wisitsoraat, A. Tuantranont, J. Jakmunee, P. Singjai, High-performance electrochemical energy storage electrodes based on nickel oxide-coated nickel foam prepared by sparking method. Electrochim Acta 238, 298–309 (2017)CrossRefGoogle Scholar
  47. 47.
    N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, M. Pars, Raman scattering in nanosized nickel oxide NiO. J Phys Conf Ser 93, 012039 (2007)CrossRefGoogle Scholar
  48. 48.
    I. Kelpsaite, J. Baltrusaitis, E. Valatka, Mater Sci Medziagotyra 17, 3 (2011)Google Scholar
  49. 49.
    I. Barauskiene, E. Valatka, Cent Eur J Chem 12, 11 (2014)CrossRefGoogle Scholar
  50. 50.
    M.A. Ghanem, A.M. Al-Mayouf, P. Arunachalam, T. Abiti, Mesoporous cobalt hydroxide prepared using liquid crystal template for efficient oxygen evolution in alkaline media. Electrochim Acta 207, 177–186 (2016)CrossRefGoogle Scholar
  51. 51.
    D. Zhao, W. Zhou, H. Li, Effects of deposition potential and anneal temperature on the hexagonal nanoporous nickel hydroxide films. Chem. Mater. 19, 3882–3891 (2007)Google Scholar
  52. 52.
    T. Garcia, A.M. Dejoz, B. Puertolas, B.E. Solsona, in Cobalt: characteristics, compounds and applications, ed. by L. J. V. By. (Nova Science Publishers, USA, 2011), pp. 161–184Google Scholar
  53. 53.
    G.C. Bond, Heterogeneous atalysis: principles and applications, 2nd edn. (Oxford University Press, Oxford, 1987)Google Scholar
  54. 54.
    Q. Zhu, L. Lin, Y.F. Jiang, X. Xie, C.Z. Yuan, A.W. Xu, New J Chem 39, 8 (2015)Google Scholar
  55. 55.
    Z. Chen, C.X. Kronawitter, B.E. Koel, Phys Chem Chem Phys 17, 43 (2015)Google Scholar
  56. 56.
    S. Cho, S. Lee, B. Hou, J. Kim, Y. Jo, H. Woo, S.M. Pawar, A.I. Inamdar, Y. Park, S.N. Cha, H. Kim, H. Im, Optimizing nanosheet nickel cobalt oxide as an anode material for bifunctional electrochemical energy storage and oxygen electrocatalysis. Electrochim Acta 274, 279–287 (2018)CrossRefGoogle Scholar
  57. 57.
    M. Li, Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Han, et al., Nanoscale 7, 19 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physical and Inorganic ChemistryKaunas University of TechnologyKaunasLithuania

Personalised recommendations