, Volume 10, Issue 1, pp 1–16 | Cite as

Hydrogen Treatment as Potential Protection of Electrodeposited Pt, Au, and Pt/Au Oxygen Reduction Catalysts on TiOx

  • Sebastian ProchEmail author
  • Shuhei Yoshino
  • Yuji Kamitaka
  • Naoko Takahashi
  • Juntaro Seki
  • Satoru Kosaka
  • Kensaku Kodama
  • Yu MorimotoEmail author
Original Research


Methods of protecting Pt(-alloy) particles against dissolution during fuel cell operation have recently gathered attention. Titania as a promising Pt catalyst support has its own built-in protection mechanism, called strong metal-support interaction (SMSI), which leads to encapsulation of metal particles. A high-coverage Pt particle film (approximated layer) with high oxygen reduction activity on the native oxide of metallic titanium has been heat treated in a hydrogen atmosphere. This treatment gave rise to its protection with a thin TiOx layer while Pt particle sintering or the destruction of the Pt structure was avoided. This unique behavior might originate from the structure of this approximate layer; i.e., contiguous patches of TiOx allow fast SMSI/encapsulation of the whole Pt structure before massive sintering or destruction can take place. Although the film was found to be covered by a 5.0 ± 0.1-nm TiOx overlayer, oxygen reduction with a mass activity of 26 ± 4 A gPt−1 could still be observed.

Graphical Abstract

Once layer-like, always layer-like: Heat treatment of a very closely spaced Pt particle film leads to retention of this structure and formation of a TiOx overlayer by the strong metal-support interaction. In contrast, sparsely distributed Pt particles sinter under those conditions. This difference in behavior also has consequences on the oxygen reduction activity.


Oxygen reduction reaction (ORR) Platinum Gold Proximity effect Strong metal-support interaction (SMSI) 

Supplementary material

12678_2018_489_MOESM1_ESM.docx (149 kb)
ESM 1 (DOCX 149 kb)


  1. 1.
    H. A. Gasteiger, J. Garche, in Handbook of Heterogeneous Catalysis, ed. By (Wiley-VCH Verlag GmbH & Co. KGaA, 2008), p.Google Scholar
  2. 2.
    P.C.K. Vesborg, T.F. Jaramillo, RSC Adv. 2, 7933 (2012)Google Scholar
  3. 3.
    H.A. Gasteiger, N.M. Marković, Science 324, 48 (2009)PubMedGoogle Scholar
  4. 4.
    A. Kongkanand, M.F. Mathias, J. Phys. Chem. Lett. 7, 1127 (2016)PubMedGoogle Scholar
  5. 5.
    M.K. Debe, Nature 486, 43 (2012)PubMedGoogle Scholar
  6. 6.
    M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Chem. Rev. 116, 3594 (2016)PubMedGoogle Scholar
  7. 7.
    I. Harkness, J. Sharman, Fibrous Pt Catalysts Created with ALD-Deposited Pt on Oxide, Carbide or Nitride Surface Tie Layers Where the Pt Deposits Extend over the Surface in Large Contiguous Islands or as Continuous Film, 2014Google Scholar
  8. 8.
    I. Harkness, J. Sharman, M. Bosund, T. Geppert, H. El-Sayed, H. A. Gasteiger, G. Ercolano, S. Cavaliere, D. Jones, J. Roziere, Demonstration of Pt-Catalysed Non-Carbon Support with Higher Mass Activity than Conventional Pt/C Nanoparticles and in Excess of 0.15 A/Mg Pt, 2014Google Scholar
  9. 9.
    M.K. Debe, J. Electrochem. Soc. 160, F522 (2013)Google Scholar
  10. 10.
    M.K. Debe, ECS Trans. 45, 47 (2012)Google Scholar
  11. 11.
    M.K. Debe, R.T. Atanasoski, A.J. Steinbach, ECS Trans. 41, 937 (2011)Google Scholar
  12. 12.
    G. A. Somorjai, Y. Li, Introduction to Surface Chemistry and Catalysis, Second Edition, (John Wiley & Sons, Inc., 2010), pp.Google Scholar
  13. 13.
    T. Tanka, K. Hack, T. Iida, S. Hara, Z. Metallkd. 87, 380 (1996)Google Scholar
  14. 14.
    M. Watanabe, S. Saegusa, P. Stonehart, J. Electroanal. Chem. Interfacial Electrochem. 271, 213 (1989)Google Scholar
  15. 15.
    M. Watanabe, H. Sei, P. Stonehart, J. Electroanal. Chem. Interfacial Electrochem. 261, 375 (1989)Google Scholar
  16. 16.
    M. Nesselberger, M. Roefzaad, R. Fayçal Hamou, P. Ulrich Biedermann, F.F. Schweinberger, S. Kunz, K. Schloegl, G.K.H. Wiberg, S. Ashton, U. Heiz, K.J.J. Mayrhofer, M. Arenz, Nat. Mater. 12, 919 (2013)PubMedGoogle Scholar
  17. 17.
    J. Speder, L. Altmann, M. Baumer, J.J.K. Kirkensgaard, K. Mortensen, M. Arenz, RSC Adv. 4, 14971 (2014)Google Scholar
  18. 18.
    J. Speder, I. Spanos, A. Zana, J.J.K. Kirkensgaard, K. Mortensen, L. Altmann, M. Bäumer, M. Arenz, Surf. Sci. 631, 278 (2015)Google Scholar
  19. 19.
    S. Proch, K. Kodama, M. Inaba, K. Oishi, N. Takahashi, Y. Morimoto, Electrocatalysis 7, 249 (2016)Google Scholar
  20. 20.
    J. Huang, J. Zhang, M.H. Eikerling, J. Phys. Chem. C 121, 4806 (2017)Google Scholar
  21. 21.
    R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J.E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.-i. Kimijima, N. Iwashita, Chem. Rev. 107, 3904 (2007)PubMedGoogle Scholar
  22. 22.
    Y. Shao-Horn, W.C. Sheng, S. Chen, P.J. Ferreira, E.F. Holby, D. Morgan, Top. Catal. 46, 285 (2007)Google Scholar
  23. 23.
    N.R. Elezovic, V.R. Radmilovic, N.V. Krstajic, RSC Adv. 6, 6788 (2016)Google Scholar
  24. 24.
    T. Ioroi, Z. Siroma, N. Fujiwara, S.-i. Yamazaki, K. Yasuda, Electrochem. Commun. 7, 183 (2005)Google Scholar
  25. 25.
    N.V. Krstajic, L.M. Vracar, V.R. Radmilovic, S.G. Neophytides, M. Labou, J.M. Jaksic, R. Tunold, P. Falaras, M.M. Jaksic, Surf. Sci. 601, 1949 (2007)Google Scholar
  26. 26.
    O. Kasian, T. Luk’yanenko, A. Velichenko, R. Amadelli, Int. J. Electrochem. Sci. 7, 7916 (2012)Google Scholar
  27. 27.
    C. Rüdiger, F. Maglia, S. Leonardi, M. Sachsenhauser, I.D. Sharp, O. Paschos, J. Kunze, Electrochim. Acta 71, 1 (2012)Google Scholar
  28. 28.
    S. Brimaud, R.J. Behm, J. Am. Chem. Soc. 135, 11716 (2013)PubMedGoogle Scholar
  29. 29.
    S. Proch, K. Kodama, S. Yoshino, N. Takahashi, N. Kato, Y. Morimoto, Electrocatalysis 7, 362 (2016)Google Scholar
  30. 30.
    J. Parrondo, T. Han, E. Niangar, C. Wang, N. Dale, K. Adjemian, V. Ramani, Proc. Natl. Acad. Sci. U. S. A. 111, 45 (2014)PubMedGoogle Scholar
  31. 31.
    M. Nakada, A. Ishihara, S. Mitsushima, N. Kamiya, K.-i. Ota, Electrochem. Solid-State Lett. 10, F1 (2007)Google Scholar
  32. 32.
    B.E. Hayden, D. Pletcher, J.-P. Suchsland, L.J. Williams, Phys. Chem. Chem. Phys. 11, 1564 (2009)PubMedGoogle Scholar
  33. 33.
    B.E. Hayden, D. Pletcher, J.-P. Suchsland, L.J. Williams, Phys. Chem. Chem. Phys. 11, 9141 (2009)PubMedGoogle Scholar
  34. 34.
    B.E. Hayden, Acc. Chem. Res. 46, 1858 (2013)PubMedGoogle Scholar
  35. 35.
    D. Schäfer, C. Mardare, A. Savan, M.D. Sanchez, B. Mei, W. Xia, M. Muhler, A. Ludwig, W. Schuhmann, Anal. Chem. 83, 1916 (2011)PubMedGoogle Scholar
  36. 36.
    C.A. Koval, J.N. Howard, Chem. Rev. 92, 411 (1992)Google Scholar
  37. 37.
    R.T. Tung, Mater. Sci. Eng., R 35, 1 (2001)Google Scholar
  38. 38.
    H. Gerischer, Electrochim. Acta 35, 1677 (1990)Google Scholar
  39. 39.
    H. Gerischer, in Top. Appl. Phys., ed. By B. O. Seraphin (Springer, Berlin-Heidelberg, 1979), p. 115Google Scholar
  40. 40.
    S. Proch, S. Yoshino, N. Kato, N. Takahashi, Y. Morimoto, Electrocatalysis 7, 451 (2016)Google Scholar
  41. 41.
    S. Proch, S. Yoshino, I. Gunjishima, S. Kosaka, N. Takahashi, N. Kato, K. Kodama, Y. Morimoto, Electrocatalysis 8, 351 (2017)Google Scholar
  42. 42.
    S. Proch, S. Yoshino, N. Takahashi, S. Kosaka, K. Kodama, Y. Morimoto, Electrocatalysis 8, 480 (2017)Google Scholar
  43. 43.
    S. Proch, S. Yoshino, N. Takahashi, J. Seki, S. Kosaka, K. Kodama, Y. Morimoto, Electrocatalysis 9, 608 (2018)Google Scholar
  44. 44.
    D.W. Goodman, J. Catal. 216, 213 (2003)Google Scholar
  45. 45.
    X.-Q. Gong, A. Selloni, O. Dulub, P. Jacobson, U. Diebold, J. Am. Chem. Soc. 130, 370 (2008)PubMedGoogle Scholar
  46. 46.
    E. Wahlström, N. Lopez, R. Schaub, P. Thostrup, A. Rønnau, C. Africh, E. Lægsgaard, J.K. Nørskov, F. Besenbacher, Phys. Rev. Lett. 90, 026101 (2003)PubMedGoogle Scholar
  47. 47.
    B.K. Min, W.T. Wallace, D.W. Goodman, J. Phys. Chem. B 108, 14609 (2004)Google Scholar
  48. 48.
    A. Topalov Angel, I. Katsounaros, M. Auinger, S. Cherevko, C. Meier Josef, O. Klemm Sebastian, J.J. Mayrhofer Karl, Angew. Chem. Int. Ed. 51, 12613 (2012)Google Scholar
  49. 49.
    A.A. Topalov, S. Cherevko, A.R. Zeradjanin, J.C. Meier, I. Katsounaros, K.J.J. Mayrhofer, Chemical Science 5, 631 (2014)Google Scholar
  50. 50.
    C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D. Yang, M.L. Perry, T.D. Jarvi, Electrochem. Solid-State Lett. 8, A273 (2005)Google Scholar
  51. 51.
    F.N. Buechi, T.J. Schmidt, Polymer Electrolyte Fuel Cell Durability (Springer Science + Business Media, LLC., New York, 2009)Google Scholar
  52. 52.
    D.Y. Chung, S.W. Jun, G. Yoon, S.G. Kwon, D.Y. Shin, P. Seo, J.M. Yoo, H. Shin, Y.-H. Chung, H. Kim, B.S. Mun, K.-S. Lee, N.-S. Lee, S.J. Yoo, D.-H. Lim, K. Kang, Y.-E. Sung, T. Hyeon, J. Am. Chem. Soc. 137, 15478 (2015)PubMedGoogle Scholar
  53. 53.
    S.J. Tauster, S.C. Fung, R.L. Garten, J. Am. Chem. Soc. 100, 170 (1978)Google Scholar
  54. 54.
    O. Dulub, W. Hebenstreit, U. Diebold, Phys. Rev. Lett. 84, 3646 (2000)PubMedGoogle Scholar
  55. 55.
    C. Zhang, H. Yu, Y. Li, Y. Gao, Y. Zhao, W. Song, Z. Shao, B. Yi, ChemSusChem 6, 659 (2013)PubMedGoogle Scholar
  56. 56.
    K. Lee, A. Mazare, P. Schmuki, Chem. Rev. 114, 9385 (2014)PubMedGoogle Scholar
  57. 57.
    L. Zhang, R. Persaud, T.E. Madey, Physical Review B 56, 10549 (1997)Google Scholar
  58. 58.
    T.J. Schmidt, H.A. Gasteiger, G.D. Stäb, P.M. Urban, D.M. Kolb, R.J. Behm, J. Electrochem. Soc. 145, 2354 (1998)Google Scholar
  59. 59.
    A.N. Enyashin, A.L. Ivanovskii, Chem. Phys. 362, 58 (2009)Google Scholar
  60. 60.
    Y.X. Leng, J.Y. Chen, H. Sun, P. Yang, G.J. Wan, J. Wang, N. Huang, Surf. Coat. Technol. 176, 141 (2004)Google Scholar
  61. 61.
    A. Vesel, M. Mozetic, J. Kovac, A. Zalar, Appl. Surf. Sci. 253, 2941 (2006)Google Scholar
  62. 62.
    J.M. Chappé, A.C. Fernandes, C. Moura, E. Alves, N.P. Barradas, N. Martin, J.P. Espinós, F. Vaz, Surf. Coat. Technol. 206, 2525 (2012)Google Scholar
  63. 63.
    Z.H. Lu, J.P. McCaffrey, B. Brar, G.D. Wilk, R.M. Wallace, L.C. Feldman, S.P. Tay, Appl. Phys. Lett. 71, 2764 (1997)Google Scholar
  64. 64.
    Y. Liu, D. Gokcen, U. Bertocci, T.P. Moffat, Science 338, 1327 (2012)PubMedGoogle Scholar
  65. 65.
    H.H. Ku, Journal of Research of the National Bureau of Standards - C. Engineering and Instrumentation 70C, 263 (1966)Google Scholar
  66. 66.
    Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, S.S. Kocha, Anal. Chem. 82, 6321 (2010)PubMedGoogle Scholar
  67. 67.
    S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interface Anal. 21, 165 (1994)Google Scholar
  68. 68.
    H. Inada, D. Su, R.F. Egerton, M. Konno, L. Wu, J. Ciston, J. Wall, Y. Zhu, Ultramicroscopy 111, 865 (2011)PubMedGoogle Scholar
  69. 69.
    G.N. Derry, P.N. Ross, Surf. Sci. 140, 165 (1984)Google Scholar
  70. 70.
    L. Calvillo, D. Fittipaldi, C. Rüdiger, S. Agnoli, M. Favaro, C. Valero-Vidal, C. Di Valentin, A. Vittadini, N. Bozzolo, S. Jacomet, L. Gregoratti, J. Kunze-Liebhäuser, G. Pacchioni, G. Granozzi, J. Phys. Chem. C 118, 22601 (2014)Google Scholar
  71. 71.
    J. Biedrzycki, S. Livraghi, E. Giamello, S. Agnoli, G. Granozzi, J. Phys. Chem. C 118, 8462 (2014)Google Scholar
  72. 72.
    J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, (Physical Electronics, Inc., 1995)Google Scholar
  73. 73.
    T.L. Barr, S. Seal, J. Vac. Sci. Technol., A 13, 1239 (1995)Google Scholar
  74. 74.
    Q. Fu, T. Wagner, S. Olliges, H.-D. Carstanjen, J. Phys. Chem. B 109, 944 (2005)PubMedGoogle Scholar
  75. 75.
    Q. Fu, T. Wagner, Surf. Sci. Rep. 62, 431 (2007)Google Scholar
  76. 76.
    L.A. DuBridge, Physical Review 31, 236 (1928)Google Scholar
  77. 77.
    A. Imanishi, E. Tsuji, Y. Nakato, J. Phys. Chem. C 111, 2128 (2007)Google Scholar
  78. 78.
    S. Bonanni, K. Aït-Mansour, H. Brune, W. Harbich, ACS Catal. 1, 385 (2011)Google Scholar
  79. 79.
    F.C. Walsh, R.G.A. Wills, Electrochim. Acta 55, 6342 (2010)Google Scholar
  80. 80.
    M.S. Chen, D.W. Goodman, Science 306, 252 (2004)PubMedGoogle Scholar
  81. 81.
    M. Chen, D.W. Goodman, Acc. Chem. Res. 39, 739 (2006)PubMedGoogle Scholar
  82. 82.
    Y.-W. Lee, D.-H. Kwak, A.-R. Park, B. Roh, I. Hwang, G. Cao, K.-W. Park, Int. J. Electrochem. Sci. 8, 9499 (2013)Google Scholar
  83. 83.
    P. Dantzer, O.J. Kleppa, M.E. Melnichak, J. Chem. Phys. 64, 139 (1976)Google Scholar
  84. 84.
    A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solutions (Marcel Dekker, Inc., New York, 1985)Google Scholar
  85. 85.
    S.G. Neophytides, K. Murase, S. Zafeiratos, G. Papakonstantinou, F.E. Paloukis, N.V. Krstajic, M.M. Jaksic, J. Phys. Chem. B 110, 3030 (2006)PubMedGoogle Scholar
  86. 86.
    L.M. Vračar, N.V. Krstajić, V.R. Radmilović, M.M. Jakšić, J. Electroanal. Chem. 587, 99 (2006)Google Scholar
  87. 87.
    L. Timperman, A. Lewera, W. Vogel, N. Alonso-Vante, Electrochem. Commun. 12, 1772 (2010)Google Scholar
  88. 88.
    W. Vogel, L. Timperman, N. Alonso-Vante, Appl. Catal., A 377, 167 (2010)Google Scholar
  89. 89.
    L. Timperman, Y.J. Feng, W. Vogel, N. Alonso-Vante, Electrochim. Acta 55, 7558 (2010)Google Scholar
  90. 90.
    G.A. Tritsaris, J. Greeley, J. Rossmeisl, J.K. Nørskov, Catal. Lett. 141, 909 (2011)Google Scholar
  91. 91.
    J. Greeley, J. Rossmeisl, A. Hellmann, J.K. Norskov, Z. Phys, Chem. 221, 1209 (2009)Google Scholar
  92. 92.
    F.J. Perez-Alonso, D.N. McCarthy, A. Nierhoff, P. Hernandez-Fernandez, C. Strebel, I.E.L. Stephens, J.H. Nielsen, I. Chorkendorff, Angew. Chem. Int. Ed. 51, 4641 (2012)Google Scholar
  93. 93.
    H. Yano, J. Inukai, H. Uchida, M. Watanabe, P.K. Babu, T. Kobayashi, J.H. Chung, E. Oldfield, A. Wieckowski, Phys. Chem. Chem. Phys. 8, 4932 (2006)PubMedGoogle Scholar
  94. 94.
    M. Shao, A. Peles, K. Shoemaker, Nano Lett. 11, 3714 (2011)PubMedGoogle Scholar
  95. 95.
    H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Catal., B 56, 9 (2005)Google Scholar
  96. 96.
    K. Shinozaki, Y. Morimoto, B.S. Pivovar, S.S. Kocha, Electrochim. Acta 213, 783 (2016)Google Scholar
  97. 97.
    B.B. Blizanac, C.A. Lucas, M.E. Gallagher, M. Arenz, P.N. Ross, N.M. Marković, J. Phys. Chem. B 108, 625 (2004)Google Scholar
  98. 98.
    W.S. Baker, J.J. Pietron, M.E. Teliska, P.J. Bouwman, D.E. Ramaker, K.E. Swider-Lyons, J. Electrochem. Soc. 153, A1702 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Toyota Central R&D Labs., Inc.NagakuteJapan
  2. 2.Sandvik Materials TechnologySandvikenSweden

Personalised recommendations