, Volume 9, Issue 6, pp 752–761 | Cite as

Shape Effect of AuPd Core-Shell Nanostructures on the Electrocatalytical Activity for Oxygen Reduction Reaction in Acid Medium

  • A. Romero Hernández
  • M. E. Manríquez
  • A. Ezeta Mejia
  • E. M. Arce EstradaEmail author
Original Research


AuPd core-shell nanostructured materials as electrocatalysts for oxygen reduction reaction (ORR) were synthesized, and the effects of size and shape of the nanoparticles were analyzed. The seed growth method was used to obtain three nanostructures: octahedrons, cuboctahedrons, and cubes, by varying the Au:Pd composition. These different nanostructures were confirmed by SEM. The electrochemical surface areas obtained were 29.50, 18.61, and 32.74 cm2 for octahedral, cuboctaedral, and cubic nanostructures, respectively. The cubic nanostructure has the largest ESA due to its smaller nanoparticle size and/or its lower tendency to agglomerate. The electrocatalytic activity for ORR in 0.5 M HClO4 using rotating disk electrode showed that the best electrocatalytic material was the AuPd cubic nanostructure. Consequently, it was possible to establish that the electrocatalytic activity for ORR in acid medium depends on the electronic and geometric effects related to the Au:Pd composition, the size and shape of the nanoparticles, and core-shell configuration.

Graphical Abstract


Core-shell nanostructures Electrocatalysis Oxygen reduction reaction 



A.R.H. would like to thank CONACyT for the Ph.D. scholarship granted. The authors also like to thank SIP-IPN (projects 20170509 and 20170630) and BEIFI-IPN granted, and CNMN-IPN for characterization techniques. E.M.A.E., M.E.M.R., and A.E.M. thank the SNI for the distinction of the membership and the stipend received.


  1. 1.
    J.H. Seog, D. Kim, Y. Kim, N.S. Kim, S.B. Lee, S. Woo Han, One-pot synthesis of Pd@Pt core–shell nanocrystals for electrocatalysis: control of crystal morphology with polyoxometalate. CrystEngComm 18(32), 6029–6034 (2016)CrossRefGoogle Scholar
  2. 2.
    C. Zhang, M. Shao, F. Ning, S. Xu, Z. Li, M. Wei, D.G. Evans, X. Duan, Au nanoparticles sensitized ZnO nanorod@nanoplatelet core–shell arrays for enhanced photoelectrochemical water splitting. Nano Energy 12, 231–239 (2015)CrossRefGoogle Scholar
  3. 3.
    J. Wang, Z. Yang, X. Gao, W. Yao, W. Wei, X. Chen, R. Zong, Y. Zhu, Core-shell g-C 3 N 4 @ZnO composites as photoanodes with double synergistic effects for enhanced visible-light photoelectrocatalytic activities. Appl. Catal. B Environ. 217, 169–180 (2017)CrossRefGoogle Scholar
  4. 4.
    G. Elmaci, C.E. Frey, P. Kurz, B. Zümreoǧlu-Karan, Water Oxidation Catalysis by Birnessite@Iron Oxide Core–Shell Nanocomposites. Inorg. Chem. 54(6), 2734–2741 (2015)CrossRefPubMedGoogle Scholar
  5. 5.
    X. Yu, J. Li, T. Shi, C. Cheng, G. Liao, J. Fan, T. Li, Z. Tang, A green approach of synthesizing of Cu-Ag core-shell nanoparticles and their sintering behavior for printed electronics. J. Alloys Compd. 724, 365–372 (2017)CrossRefGoogle Scholar
  6. 6.
    Y. Wei, S. Chen, Y. Lin, Z. Yang, L. Liu, Cu–Ag core–shell nanowires for electronic skin with a petal molded microstructure. J. Mater. Chem. C 3(37), 9594–9602 (2015)CrossRefGoogle Scholar
  7. 7.
    P. Ramasamy, B. Kim, M.-S. Lee, J.-S. Lee, Beneficial effects of water in the colloidal synthesis of InP/ZnS core–shell quantum dots for optoelectronic applications. Nanoscale 8(39), 17159–17168 (2016)CrossRefPubMedGoogle Scholar
  8. 8.
    L.Y. Lin, L.Y. Lin, Material Effects on the Electrocapacitive Performance for the Energy-storage Electrode with Nickel Cobalt Oxide Core/shell Nanostructures. Electrochim. Acta 250, 335–347 (2017)CrossRefGoogle Scholar
  9. 9.
    S.R. Sabale, P. Kandesar, V. Jadhav, R. Komorek, R.K. Motkuri, X.-Y. Yu, Recent developments in the synthesis, properties, and biomedical applications of core/shell superparamagnetic iron oxide nanoparticles with gold. Biomater. Sci. 5(11), 2212–2225 (2017)CrossRefPubMedGoogle Scholar
  10. 10.
    H. Ming, Chem. Commun. 52, 1567 (2016)CrossRefGoogle Scholar
  11. 11.
    R. Ghosh Chaudhuri, S. Paria, Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem. Rev. 112(4), 2373–2433 (2012)CrossRefPubMedGoogle Scholar
  12. 12.
    P. Mélinon, S. Begin-colin, J. Luc, F. Gauffre, N. Herlin, G. Ledoux, J. Plain, P. Reiss, F. Silly, B. Warot-fonrose, Engineered inorganic core/shell nanoparticles. Phys. Rep. 543(3), 163–197 (2014)CrossRefGoogle Scholar
  13. 13.
    G. Gotti, D. Evrard, K. Fajerwerg, P. Gros, Oxygen reduction reaction features in neutral media on glassy carbon electrode functionalized by chemically prepared gold nanoparticles. J. Solid State Electrochem. 20(6), 1539–1550 (2016)CrossRefGoogle Scholar
  14. 14.
    J. Zhang, Recent advances in cathode electrocatalysts for PEM fuel cells. Front. Energy 5(2), 137–148 (2011)CrossRefGoogle Scholar
  15. 15.
    G. Zhang, Z.G. Shao, W. Lu, F. Xie, H. Xiao, X. Qin, B. Yi, Appl. Catal. B Environ. 132–133, 183 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Kim, J. Guk, K. Yuseong, W.B. Kim, An Overview of One-Dimensional Metal Nanostructures for Electrocatalysis. Catal. Surv. Jpn. 19(2), 88–121 (2015)CrossRefGoogle Scholar
  17. 17.
    S. Wang, L. Kuai, Y. Huang, X. Yu, Y. Liu, W. Li, L. Chen, B. Geng, Chem. Eur. J. 240 (2013)Google Scholar
  18. 18.
    M. Shao, Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J. Power Sources 196(5), 2433–2444 (2011)CrossRefGoogle Scholar
  19. 19.
    Y. Li, Z.W. Wang, C.-Y. Chiu, L. Ruan, W. Yang, Y. Yang, R.E. Palmer, Y. Huang, Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness. Nanoscale 4(3), 845–851 (2012)CrossRefPubMedGoogle Scholar
  20. 20.
    N.V. Long, M. Ohtaki, T.D. Hien, J. Randy, M. Nogami, A comparative study of Pt and Pt–Pd core–shell nanocatalysts. Electrochim. Acta 56(25), 9133–9143 (2011)CrossRefGoogle Scholar
  21. 21.
    L. Xiao, L. Zhuang, Y. Liu, J. Lu, H.D. Abruña, Activating Pd by Morphology Tailoring for Oxygen Reduction. J. Am. Chem. Soc. 131(2), 602–608 (2009)CrossRefPubMedGoogle Scholar
  22. 22.
    J.J. Lv, J.N. Zheng, Y.Y. Wang, A.J. Wang, L.L. Chen, J.J. Feng, A simple one-pot strategy to platinum–palladium@palladium core–shell nanostructures with high electrocatalytic activity. J. Power Sources 265, 231–238 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Li, P. Zhou, F. Li, J. Ma, Y. Liu, X. Zhang, H. Huo, J. Jin, J. Ma, Shape-controlled synthesis of Pd polyhedron supported on polyethyleneimine-reduced graphene oxide for enhancing the efficiency of hydrogen evolution reaction. J. Power Sources 302, 343–351 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Tymen, A. Undisz, M. Rettenmayr, A. Ignaszak, Pt–Pd catalytic nanoflowers: Synthesis, characterization, and the activity toward electrochemical oxygen reduction. J. Mater. Res. 30(15), 2327–2339 (2015)CrossRefGoogle Scholar
  25. 25.
    C.W. Chen, Y.S. Hsieh, C.C. Syu, H.R. Chen, C.L. Lee, Displacement preparation-induced effects on structure of Ag–Pd nanobrushes for catalyzing oxygen reduction. J. Alloys Compd. 580, S359–S363 (2013)CrossRefGoogle Scholar
  26. 26.
    G. Fu, Z. Liu, Y. Chen, J. Lin, Y. Tang, T. Lu, Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Res. 7(8), 1205–1214 (2014)CrossRefGoogle Scholar
  27. 27.
    Y. Lu, S. Du, R. Steinberger-Wilckens, Three-dimensional catalyst electrodes based on PtPd nanodendrites for oxygen reduction reaction in PEFC applications. Appl. Catal. B Environ. 187, 108–114 (2016)CrossRefGoogle Scholar
  28. 28.
    C. Koenigsmann, A.C. Santulli, E. Sutter, S.S. Wong, Ambient Surfactantless Synthesis, Growth Mechanism, and Size-Dependent Electrocatalytic Behavior of High-Quality, Single Crystalline Palladium Nanowires. ACS Nano 5(9), 7471–7487 (2011)CrossRefPubMedGoogle Scholar
  29. 29.
    C.W. Yang, K. Chanda, P.H. Lin, Y.N. Wang, C.W. Liao, M.H. Huang, Fabrication of Au–Pd Core–Shell Heterostructures with Systematic Shape Evolution Using Octahedral Nanocrystal Cores and Their Catalytic Activity. J. Am. Chem. Soc. 133(49), 19993–20000 (2011)CrossRefPubMedGoogle Scholar
  30. 30.
    Y. Dong, X. Yang, Z. Zhang, S. Dong, S. Li, Photochemical Synthesis of Au@Pd Core-Shell Nanoparticles for Methanol Oxidation Reaction: the Promotional Effect of the Au Core. MATEC Web of Conferences 65(4005) (2016). CrossRefGoogle Scholar
  31. 31.
    C. Hsu, C. Huang, Y. Hao, F. Liu, Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation. Nanoscale Res. Lett. 8(1), 113 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    C.N. Brodsky, A.P. Young, K.C. Ng, C.H. Kuo, C.K. Tsung, Electrochemically Induced Surface Metal Migration in Well-Defined Core–Shell Nanoparticles and Its General Influence on Electrocatalytic Reactions. ACS Nano 8(9), 9368–9378 (2014)CrossRefPubMedGoogle Scholar
  33. 33.
    J.H. Shim, J. Kim, C. Lee, Y. Lee, Porous Pd Layer-Coated Au Nanoparticles Supported on Carbon: Synthesis and Electrocatalytic Activity for Oxygen Reduction in Acid Media. Chem. Mater. 23(21), 4694–4700 (2011)CrossRefGoogle Scholar
  34. 34.
    M. Shao, Electrocatalysis in Fuel Cells, Lecture Notes in Energy 9 (Springer-Verlag, London, 2013), pp. 339–374CrossRefGoogle Scholar
  35. 35.
    J. Masa, C. Batchelor-McAuley, W. Schuhmann, R.G. Compton, Koutecky-Levich analysis applied to nanoparticle modified rotating disk electrodes: Electrocatalysis or misinterpretation. Nano Res. 7(1), 71–78 (2014)CrossRefGoogle Scholar
  36. 36.
    J.M. Mora-Hernández, A. Ezeta-Mejía, C. Reza-San Germán, S. Citalán-Cigarroa, E.M. Arce-Estrada, Electrochemical activity towards ORR of mechanically alloyed PdCo supported on Vulcan carbon and carbon nanospheres. J. Appl. Electrochem. 44(12), 1307–1315 (2014)CrossRefGoogle Scholar
  37. 37.
    L.H. Brickwedde, Properties of aqueous solutions of perchloric acid. Natl. Bur. Stand 42(3), 309 (1949)CrossRefGoogle Scholar
  38. 38.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (John Wiley & Sons, New York, 2001), pp. 87–107Google Scholar
  39. 39.
    J.O. Bockris, A.K.N. Reddy, M. Gamboa-Aldeco, Modern Electrochemistry, Fundamentals of Electrodic, 2nd edn. (Kluwer Academic Publishers, New York, 2000), pp. 1438–1442Google Scholar
  40. 40.
    O. Antoine, Y. Bultel, R. Durand, Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion®. J. Electroanal. Chem. 499(1), 85–94 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ingeniería en Metalurgia y MaterialesInstituto Politécnico Nacional, ESIQIECDMXMexico
  2. 2.Laboratorio de Investigación en Fisicoquímica y MaterialesInstituto Politécnico Nacional, ESIQIECDMXMexico

Personalised recommendations