Advertisement

Electrocatalysis

, Volume 9, Issue 6, pp 725–734 | Cite as

Efficient Electrocatalytic Degradation of 4-Chlorophenol Using a Ti/RuO2–SnO2–TiO2/PbO2–CeO2 Composite Electrode

  • Hongbin Yu
  • Yaning Song
  • Bin Zhao
  • Ying Lu
  • Suiyi Zhu
  • Jiao Qu
  • Xinhong Wang
  • Weichao Qin
Original Research
  • 128 Downloads

Abstract

A Ti/RuO2–SnO2–TiO2/PbO2–CeO2 composite electrode was synthesized by two steps. The first step was to prepare the interlayer of RuO2–SnO2–TiO2 through a sol–gel method. The second was to fabricate the surface layer of Ce-doped PbO2 by an electrodeposition method. The morphologies and structures of the prepared materials were well characterized by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The electrochemical properties were investigated by electrochemical impedance spectroscopy and 4-chlorophenol was selected as a model pollutant to evaluate electrocatalytic activities. The results indicated that the molar ratios of 5:3:2 (Ti/Ru/Sn) and 1:100 (Ce/Pb) were optimal for the interlayer and the surface layer, respectively. Excessive cerium doping would change the preferential crystal orientation of PbO2 from (101) phase to (200) phase. The impedance of the electrode decreased with increasing cerium doping quantity. The average current efficiency and the energy consumption of the cerium-doped electrode, as compared with that of the undoped electrode, could be increased by 28.8% and decreased by 32.7%, respectively. Furthermore, the service life of the modified electrodes was enhanced greatly. The improved performance of the modified electrode could be attributed to both the interlayer and the compact surface microstructure resulted from cerium doping.

Graphical Abstract

Keywords

CeO2 PbO2 Modified electrode Electrocatalytic oxidation 4-Chlorophenol 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51878133, 51778117, 51578118, 41877364), the Excellent Youth Talents Foundation of Jilin Science & Technology Department (20170520079JH), and the 13th Five-Year Science and Technology Project (JJKH20180652KJ).

References

  1. 1.
    J. Niu, H. Lin, J. Xu, H. Wu, Y. Li, Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by Ce-doped modified porous nanocrystalline PbO2 film electrode. Environ. Sci. Technol. 46(18), 10191–10198 (2012)CrossRefPubMedGoogle Scholar
  2. 2.
    X. Duan, Y. Zhao, W. Liu, L. Chang, X. Jin, Electrochemical degradation of p-nitrophenol on carbon nanotube and Ce-modified–PbO2 electrode. J. Taiwan Inst. Chem. Eng. 45(6), 2975–2985 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Niu, D. Maharana, J. Xu, Z. Chai, Y. Bao, A high activity of Ti/SnO2-Sb electrode in the electrochemical degradation of 2,4-dichlorophenol in aqueous solution. J. Environ. Sci. 25(7), 1424–1430 (2013)CrossRefGoogle Scholar
  4. 4.
    Y. Yao, L. Jiao, L. Cui, N. Yu, F. Wei, Z. Lu, Preparation and characterization of PbO2-CeO2 nanocomposite electrode with high cerium content and its application in the electrocatalytic degradation of malachite green. J. Electrochem. Soc. 162(9), H693–H698 (2015)CrossRefGoogle Scholar
  5. 5.
    H. Liu, S. Yu, T. Shen, S. Tong, C. Ma, Preparation of a high-performance composite PbO2 electrode from a new bath for p-chlorophenol oxidation. Sep. Purif. Technol. 132, 27–32 (2014)CrossRefGoogle Scholar
  6. 6.
    Y. Yao, L. Cui, C. Zhao, L. Jiao, Influences of cerium on the electrodeposition process and physicochemical properties of lead dioxide electrodes. J. Electrochem. Soc. 161(10), D528–D533 (2014)CrossRefGoogle Scholar
  7. 7.
    I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ. Sci. Pollut. Res. 21(14), 8336–8367 (2014)CrossRefGoogle Scholar
  8. 8.
    C. Flox, C. Arias, E. Brillas, A. Savall, K. Groenen–Serrano, Electrochemical incineration of cresols: a comparative study between PbO2 and boron-doped diamond anodes. Chemosphere 74(10), 1340–1347 (2009)CrossRefPubMedGoogle Scholar
  9. 9.
    D. Maharana, Z. Xu, J. Niu, N.N. Rao, Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid by metal-oxide-coated Ti electrodes. Chemosphere 136, 145–152 (2015)CrossRefPubMedGoogle Scholar
  10. 10.
    J. Niu, Y. Bao, Y. Li, Z. Chai, Electrochemical mineralization of pentachlorophenol (PCP) by Ti/SnO2-Sb electrodes. Chemosphere 92(11), 1571–1577 (2013)CrossRefPubMedGoogle Scholar
  11. 11.
    H. Lin, J. Niu, S. Ding, L. Zhang, Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes. Water Res. 46(7), 2281–2289 (2012)CrossRefPubMedGoogle Scholar
  12. 12.
    M. Santos, M. Medeiros, T. Oliveira, C. Morais, S. Mazzetto, C. MartÍnez-Huitle, S. Castro, Electrooxidation of cardanol on mixed metal oxide (RuO2-TiO2 and IrO2-RuO2-TiO2) coated titanium anodes: insights into recalcitrant phenolic compounds. Electrochim. Acta 212, 95–101 (2016)CrossRefGoogle Scholar
  13. 13.
    X. Li, H. Li, M. Li, C. Li, D. Sun, Y. Lei, B. Yang, Preparation of a porous boron-doped diamond/Ta electrode for the electrocatalytic degradation of organic pollutants. Carbon 129, 543–551 (2018)CrossRefGoogle Scholar
  14. 14.
    Y. He, X. Wang, W. Huang, R. Chen, W. Zhang, H. Li, H. Lin, Hydrophobic networked PbO2 electrode for electrochemical oxidation of paracetamol drug and degradation mechanism kinetics. Chemosphere 193, 89–99 (2018)CrossRefPubMedGoogle Scholar
  15. 15.
    O. Shmychkova, T. Luk’yanenko, A. Yakubenko, R. Amadelli, A. Velichenko, Electrooxidation of some phenolic compounds at Bi-doped PbO2. Appl. Catal. B Environ. 162, 346–351 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Dan, H. Lu, X. Liu, H. Lin, J. Zhao, Ti/PbO2 + nano–Co3O4 composite electrode material for electrocatalysis of O2 evolution in alkaline solution. Int. J. Hydrog. Energy 36(3), 1949–1954 (2011)CrossRefGoogle Scholar
  17. 17.
    D. Rosestolato, R. Amadelli, A.B. Velichenko, Electrode characteristics for ozone production: a case study using undoped and doped PbO2 on porous platinised titanium substrates. J. Solid State Electrochem. 20(4), 1181–1190 (2016)CrossRefGoogle Scholar
  18. 18.
    X. Duan, C. Zhao, W. Liu, X. Zhao, L. Chang, Fabrication of a novel PbO2 electrode with a graphene nanosheet interlayer for electrochemical oxidation of 2-chlorophenol. Electrochim. Acta 240, 424–436 (2017)CrossRefGoogle Scholar
  19. 19.
    Z. Xu, H. Liu, J. Niu, Y. Zhou, C. Wang, Y. Wang, Hydroxyl multi-walled carbon nanotube-modified nanocrystalline PbO2 anode for removal of pyridine from wastewater. J. Hazard. Mater. 327, 144–152 (2017)CrossRefPubMedGoogle Scholar
  20. 20.
    J. Chen, Y. Xia, Q. Dai, Electrochemical degradation of chloramphenicol with a novel Al doped PbO2 electrode: performance, kinetics and degradation mechanism. Electrochim. Acta 165, 277–287 (2015)CrossRefGoogle Scholar
  21. 21.
    Q. Dai, J. Zhou, X. Meng, D. Feng, C. Wu, J. Chen, Electrochemical oxidation of cinnamic acid with Mo modified PbO2 electrode: electrode characterization, kinetics and degradation pathway. Chem. Eng. J. 289, 239–246 (2016)CrossRefGoogle Scholar
  22. 22.
    L. Yu, J. Xue, Y. Luo, C. Tang, G. Li, Ionic liquids assisted electrodeposition and electrocatalytic activity of PbO2 electrodes. Int. J. Electrochem. Sci. 11, 1199–1212 (2016)Google Scholar
  23. 23.
    Y. Yao, H. Dong, L. Jiao, N. Yu, L. He, Preparation and electrocatalytic property of PbO2–CeO2 nanocomposite electrodes by pulse reverse electrodeposition methods. J. Electrochem. Soc. 163(5), D179–D184 (2016)CrossRefGoogle Scholar
  24. 24.
    J. Kong, S. Shi, L. Kong, X. Zhu, J. Ni, Preparation and characterization of PbO2 electrodes doped with different rare earth oxides. Electrochim. Acta 53(4), 2048–2054 (2007)CrossRefGoogle Scholar
  25. 25.
    Z. He, C. Huang, Q. Wang, Z. Jiang, J. Chen, S. Song, Preparation of a praseodymium modified Ti/SnO2-Sb/PbO2 electrode and its application in the anodic degradation of the azo dye acid black 194. Int. J. Electrochem. Sci. 6, 4341–4354 (2011)Google Scholar
  26. 26.
    Y. Wang, Z. Shen, Y. Li, J. Niu, Electrochemical properties of the erbium–chitosan–fluorine-modified PbO2 electrode for the degradation of 2,4-dichlorophenol in aqueous solution. Chemosphere 79(10), 987–996 (2010)CrossRefPubMedGoogle Scholar
  27. 27.
    Y. Liu, H. Liu, J. Ma, J. Li, Investigation on electrochemical properties of cerium doped lead dioxide anode and application for elimination of nitrophenol. Electrochim. Acta 56(3), 1352–1360 (2011)CrossRefGoogle Scholar
  28. 28.
    Y. Jin, F. Wang, M. Xu, Y. Hun, W. Fang, Y. Wei, C. Zhu, Preparation and characterization of Ce and PVP co-doped PbO2 electrode for wastewater treatment. J. Taiwan Inst. Chem. Eng. 51, 135–142 (2015)CrossRefGoogle Scholar
  29. 29.
    O. Shmychkova, T. Luk’yanenko, R. Amadelli, A. Velichenko, Electrodeposition of Ce-doped PbO2. J. Electroanal. Chem. 706, 86–92 (2013)CrossRefGoogle Scholar
  30. 30.
    X. Zeng, M. Zhang, X. Wang, X. Chen, X. Su, W. Tang, Effects of Sn content on Ti/RuO2–SnO2–TiO2 anodes used in the generation of electrolyzed oxidizing water. J. Electroanal. Chem. 677–680, 133–138 (2012)CrossRefGoogle Scholar
  31. 31.
    H. Yue, L. Xue, F. Chen, Efficiently electrochemical removal of nitrite contamination with stable RuO2-TiO2/Ti electrodes. Appl. Catal. B Environ. 206, 683–691 (2017)CrossRefGoogle Scholar
  32. 32.
    W. Tang, Y. Li, W. Li, X. Chen, X. Zeng, Preparation of a coated Ti anode for producing acidic electrolyzed oxidizing water. LWT–Food Sci. Technol. 66, 606–614 (2016)CrossRefGoogle Scholar
  33. 33.
    A.B. Velichenko, D. Devilliers, Electrodeposition of fluorine-doped lead dioxide. J. Fluor. Chem. 128(4), 269–276 (2007)CrossRefGoogle Scholar
  34. 34.
    Y. Yao, L. Cui, L. Jiao, X. Chen, N. Yu, H. Dong, Effects of duty cycle on the preparation and property of PbO2–CeO2 nanocomposite electrodes. J. Solid State Electrochem. 20(3), 725–731 (2016)CrossRefGoogle Scholar
  35. 35.
    X. Chen, G. Chen, Stable Ti/RuO2–Sb2O5–SnO2 electrodes for O2 evolution. Electrochim. Acta 50(20), 4155–4159 (2005)CrossRefGoogle Scholar
  36. 36.
    Q. Li, Q. Zhang, H. Cui, L. Ding, Z. Wei, J. Zhai, Fabrication of cerium-doped lead dioxide anode with improved electrocatalytic activity and its application for removal of Rhodamine B. Chem. Eng. J. 228, 806–814 (2013)CrossRefGoogle Scholar
  37. 37.
    A.B. Velichenko, R. Amadelli, A. Benedetti, D.V. Girenko, S.V. Kovalyov, F.I. Danilov, Electrosynthesis and physicochemical properties of PbO2 films. J. Electrochem. Soc. 149(9), C445–C449 (2002)CrossRefGoogle Scholar
  38. 38.
    Q. Dai, Y. Xia, J. Chen, Mechanism of enhanced electrochemical degradation of highly concentrated aspirin wastewater using a rare earth La–Y co-doped PbO2 electrode. Electrochim. Acta 188, 871–881 (2016)CrossRefGoogle Scholar
  39. 39.
    W. Yang, W. Yang, X. Lin, Research on PEG modified Bi-doping lead dioxide electrode and mechanism. Appl. Surf. Sci. 258(15), 5716–5722 (2012)CrossRefGoogle Scholar
  40. 40.
    R. Amadelli, L. Samiolo, A.D. Battisti, A.B. Velichenko, Electro-oxidation of some phenolic compounds by electrogenerated O3 and by direct electrolysis at PbO2 anodes. J. Electrochem. Soc. 158(7), P87–P92 (2011)CrossRefGoogle Scholar
  41. 41.
    R. Amadelli, A.D. Battisti, D.V. Girenko, S.V. Kovalyov, A.B. Velichenko, Electrochemical oxidation of trans-3,4-dihydroxycinnamic acid at PbO2 electrodes: direct electrolysis and ozone mediated reactions compared. Electrochim. Acta 46(2-3), 341–347 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hongbin Yu
    • 1
  • Yaning Song
    • 1
  • Bin Zhao
    • 1
  • Ying Lu
    • 1
  • Suiyi Zhu
    • 1
  • Jiao Qu
    • 1
  • Xinhong Wang
    • 2
  • Weichao Qin
    • 1
  1. 1.Engineering Lab for Water Pollution Control and Resources Recovery, School of EnvironmentNortheast Normal UniversityChangchunChina
  2. 2.College of Resources and EnvironmentJilin Agricultural UniversityChangchunChina

Personalised recommendations