, Volume 9, Issue 6, pp 735–743 | Cite as

Comparison of Electro-Catalytic Activity of Fe-Ni-Co/C and Pd/C Nanoparticles for Glucose Electro-Oxidation in Alkaline Half-Cell and Direct Glucose Fuel Cell

  • Mohammad ZhianiEmail author
  • Amir Abedini
  • Somayeh Majidi
Original Research


In this paper, the performance of a non-noble metal anode catalyst (Fe-Ni-Co/C) is evaluated and compared with Pd/C electro-catalyst toward the glucose oxidation reaction in the alkaline half-cell and direct glucose fuel cell (DGFC). The electro-oxidation of glucose on Fe-Ni-Co/C and Pd/C is characterized in the half-cell by cyclic voltammetry (CV) and chronoamperometery (CA) techniques. Results indicate that Fe-Ni-Co/C has higher activity and lower tolerance against poisoning intermediate products for glucose oxidation in the alkaline media than that of Pd/C electro-catalyst. Polarization curves of passive air breathing alkaline DGFC show that the DGFC equipped with a Fe-Ni-Co/C anode catalyst produces higher maximum power density (MPD) and open circuit voltage (OCV) compared to a DGFC which employed Pd/C at the anode side; 23 mW cm−2 and 0.93 V versus 14 mW cm−2 and 0.65 V. These results are related to the remarkable activity of Fe-Ni-Co/C electro-catalyst toward glucose oxidation under the alkaline media. Electrochemical impedance response of both cells demonstrates that the DGFC equipped with Fe-Ni-Co/C has lower charge and mass transfer resistance compared to the DGFC equipped with Pd/C.

Graphical abstract


Glucose oxidation reaction Non-noble metal electro-catalyst Electro-catalyst activity Direct glucose fuel cell 



The support of the Isfahan University of Technology, Iranian Nanotechnology Initiative Council, and the Iranian Fuel Cell Steering is acknowledged. The authors also gratefully acknowledge the financial support of INSF through the project No. 96017107. The authors would also like to special thanks to Dr. Mohammad M. Momeni assistant professor of chemistry department of IUT for his corporation.


  1. 1.
    S.K. Chaudhuri, D.R. Lovley, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21(10), 1229–1232 (2003)CrossRefPubMedGoogle Scholar
  2. 2.
    J.P. Van Wyk, Trends Biotechnol. 19, 172 (2001)CrossRefPubMedGoogle Scholar
  3. 3.
    D. Basu, S. Basu, Performance studies of Pd–Pt and Pt–Pd–Au catalyst for electro-oxidation of glucose in direct glucose fuel cell. Int. J. Hydrog. Energy 37(5), 4678–4684 (2012)CrossRefGoogle Scholar
  4. 4.
    B. Tao, F. Miao, P.K. Chu, Preparation and characterization of a novel nickel–palladium electrode supported by silicon nanowires for direct glucose fuel cell. Electrochim. Acta 65, 149–152 (2012)CrossRefGoogle Scholar
  5. 5.
    M.A. Al-Omair, A.H. Touny, F.A. Al-Odail, M.M. Saleh, Electrocatalytic oxidation of glucose at nickel phosphate nano/micro particles modified electrode. Electrocatalysis 8(4), 340–350 (2017)CrossRefGoogle Scholar
  6. 6.
    P.C. Hallenbeck, M. Grogger, D. Vereka, Recent Advances in Microbial Electrocatalysis. Electrocatalysis 5(4), 319–329 (2014)CrossRefGoogle Scholar
  7. 7.
    K. Rabaey, N. Boon, S.D. Siciliano, M. Verhaege, W. Verstraete, Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70(9), 5373–5382 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    M. Chawla, V. Sharma, J. Kaur Randhawa, Facile one pot synthesis of CuO nanostructures and their effect on nonenzymatic glucose biosensing. Electrocatalysis 8(1), 27–35 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Aquino Neto, J.C. Forti, A.R. De Andrade, An overview of enzymatic biofuel cells. Electrocatalysis 1(1), 87–94 (2010)CrossRefGoogle Scholar
  10. 10.
    L. An, T. Zhao, S. Shen, Q. Wu, R. Chen, Alkaline direct oxidation fuel cell with non-platinum catalysts capable of converting glucose to electricity at high power output. J. Power Sources 196(1), 186–190 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Kerzenmacher, J. Ducree, R. Zengerle, F. von Stetten, Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J. Power Sources 182(1), 1–17 (2008)CrossRefGoogle Scholar
  12. 12.
    J. McGinley, F.N. McHale, P. Hughes, C.N. Reid, A.P. McHale, Production of electrical energy from carbohydrates using a transition metal-catalysed liquid alkaline fuel cell. Biotechnol. Lett. 26(23), 1771–1776 (2004)CrossRefPubMedGoogle Scholar
  13. 13.
    X. Xia, X. Cao, P. Liang, X. Huang, S. Yang, G. Zhao, Electricity generation from glucose by a Klebsiella sp. in microbial fuel cells. Appl. Microbiol. Biotechnol. 87(1), 383–390 (2010)CrossRefPubMedGoogle Scholar
  14. 14.
    P. Kavanagh, S. Boland, P. Jenkins, D. Leech, Performance of a glucose/O2 enzymatic biofuel cell containing a mediated melanocarpus albomyceslaccase cathode in a physiological buffer. Fuel Cells 9(1), 79–84 (2009)CrossRefGoogle Scholar
  15. 15.
    C. Jin, I. Taniguchi, Electrocatalytic activity of silver modified gold film for glucose oxidation and its potential application to fuel cells. Mat. Lett. 61(11-12), 2365–2367 (2007)CrossRefGoogle Scholar
  16. 16.
    A. Habrioux, E. Sibert, K. Servat, W. Vogel, K.B. Kokoh, N. AlonsoVante, Activity of platinum−gold alloys for glucose electrooxidation in biofuel cells. J. Phys. Chem. B 111(34), 10329–10333 (2007)CrossRefPubMedGoogle Scholar
  17. 17.
    D. Basu, S. Basu, A study on direct glucose and fructose alkaline fuel cell. Electrochim. Acta 55(20), 5775–5779 (2010)CrossRefGoogle Scholar
  18. 18.
    F. Xiao, F. Zhao, D. Mei, Z. Mo, B. Zeng, Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film. Biosens. Bioelectron. 24(12), 3481–3486 (2009)CrossRefPubMedGoogle Scholar
  19. 19.
    B.Y. Song, Y.S. Li, Y.L. He, Z.D. Cheng, Anode structure design for the high-performance anion-exchange membrane direct glucose fuel cell. Energy Procedia 61, 2118–2122 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Hebiel, T.W. Napporn, K.B. Kokoh, Beneficial promotion of underpotentially deposited lead adatoms on gold nanorods toward glucose electrooxidation. Electrocatalysis 8(1), 67–73 (2017)CrossRefGoogle Scholar
  21. 21.
    I. Potzelberger, S. Hild, C.C. Mardare, A.W. Hassel, L.M. Uiberlacker, Electrocatalysis 179, 1 (2017)Google Scholar
  22. 22.
    E.H. Yu, X. Wang, U. Krewer, L. Li, K. Scott, Direct oxidation alkaline fuelcells: from materials to systems. Energy Environ. Sci. 5(2), 5668–5680 (2012)CrossRefGoogle Scholar
  23. 23.
    V.S. Bagotzky, Y.B. Vasilyev, Some characteristics of oxidation reactions of organic compounds on platinum electrodes. Electrochim. Acta 9(7), 869–882 (1964)CrossRefGoogle Scholar
  24. 24.
    H. Yin, C. Zhou, C. Xu, P. Liu, X. Xu, Y. Ding, Aerobic oxidation of D-glucose on support-free nanoporous gold. J. Phys. Chem. C 112(26), 9673–9678 (2008)CrossRefGoogle Scholar
  25. 25.
    D. Basu, S. Basu, Synthesis, characterization and application of platinum based bi-metallic catalysts for direct glucose alkaline fuel cell. Electrochim. Acta 56(17), 6106–6113 (2011)CrossRefGoogle Scholar
  26. 26.
    M. Pasta, R. Ruffo, E. Falletta, C. Mari, C. Della Pina, Gold bulletin 43, 57 (2010)CrossRefGoogle Scholar
  27. 27.
    J.P. Spets, Y. Kiros, M. Kuosa, J. Rantanen, M. Lampinen, K. Saari, Bioorganic materials as a fuel source for low-temperature direct-mode fuel cells. Electrochim. Acta 55(26), 7706–7709 (2010)CrossRefGoogle Scholar
  28. 28.
    M. Gao, X. Liu, M. Irfan, X. Wang, P. Zhang, Int. J. Hydrogen Energy in Press (2017)Google Scholar
  29. 29.
    F. Cuevas-Muniz, M. Guerra-Balcazar, F. Castaneda, J. Ledesma-Garcia, L. Arriaga, Performance of Au and AuAg nanoparticles supported on Vulcan in a glucose laminar membraneless microfuel cell. J. Power Sources 196(14), 5853–5857 (2011)CrossRefGoogle Scholar
  30. 30.
    S. Hui, J. Zhang, X. Chen, H. Xu, D. Ma, Y. Liu, Study of an amperometric glucose sensor based on Pd–Ni/SiNW electrode. Sensors Actuators B Chem. 155(2), 592–597 (2011)CrossRefGoogle Scholar
  31. 31.
    J. Wang, Z. Wang, D. Zhao, C. Xu, Facile fabrication of nanoporous PdFe alloy for nonenzymatic electrochemical sensing of hydrogen peroxide and glucose. Anal. Chim. Acta 832, 34–43 (2014)CrossRefPubMedGoogle Scholar
  32. 32.
    A. Brouzgou, L.L. Yan, S.Q. Song, P. Tsiakaras, Glucose electrooxidation over PdxRh/C electrocatalysts in alkaline medium. Appl. Catal. B Environ. 147, 481–489 (2014)CrossRefGoogle Scholar
  33. 33.
    S.M. El-Refaei, M.I. Awad, B.E. El-Anadouli, M.M. Saleh, Electrocatalytic glucose oxidation at binary catalyst of nickel and manganese oxides nanoparticles modified glassy carbon electrode: Optimization of the loading level and order of deposition. Electrochim. Acta 92, 460–467 (2013)CrossRefGoogle Scholar
  34. 34.
    K.C. Lin, Y.C. Lin, S.M. Chen, A highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanoparticles. Electrochim. Acta 96, 164–172 (2013)CrossRefGoogle Scholar
  35. 35.
    M. Zhiani, H.A. Gasteiger, M. Piana, S. Catanorchi, Comparative study between platinum supported on carbon and non-noble metal cathode catalyst in alkaline direct ethanol fuel cell (ADEFC). Int. J. Hydrog. Energy 36(8), 5110–5116 (2011)CrossRefGoogle Scholar
  36. 36.
    V. Bambagioni, C. Bianchini, A. Marchionni, J. Filippi, F. Vizza, J. Teddy, P. Serp, M. Zhiani, Pd and Pt–Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol=methanol, ethanol, glycerol). J. Power Sources 190(2), 241–251 (2009)CrossRefGoogle Scholar
  37. 37.
    F. Hu, G. Cui, Z. Wei, P.K. Shen, Improved kinetics of ethanol oxidation on Pd catalysts supported on tungsten carbides/carbon nanotubes. Electrochem. Commun. 10(9), 1303–1306 (2008)CrossRefGoogle Scholar
  38. 38.
    C. Xu, Z. Tian, Z. Chen, S.P. Jiang, Pd/C promoted by Au for 2-propanol electrooxidation in alkaline media. Electrochem. Commun. 10(2), 246–249 (2008)CrossRefGoogle Scholar
  39. 39.
    J. Chen, T. Matsuura, M. Hori, Novel gas diffusion layer with water management function for PEMFC. J. Power Sources 131(1-2), 155–161 (2004)CrossRefGoogle Scholar
  40. 40.
    I. Becerik, F. Kadirgan, The electrocatalytic properties of palladium electrodes for the oxidation of d-glucose in alkaline medium. Electrochim. Acta 37(14), 2651–2657 (1992)CrossRefGoogle Scholar
  41. 41.
    L. Yan, A. Brouzgou, Y. Meng, M. Xiao, P. Tsiakaras, S. Song, Appl. Catal. B Environ. 150, 268 (2014)CrossRefGoogle Scholar
  42. 42.
    M. Zhiani, B. Rezaei, J. Jalili, Int. J. Hydrog. Energy 35, 929 (2010)Google Scholar
  43. 43.
    M. Zhiani, H. Rostami, S. Majidi, K. Karami, Bis (dibenzylidene acetone) palladium (0) catalyst for glycerol oxidation in half cell and in alkaline direct glycerol fuel cell. Int. J. Hydrog. Energy 38(13), 5435–5441 (2013)CrossRefGoogle Scholar
  44. 44.
    A. Bard, L. Faulkner, Electrochemical methods, fundamentals and application (Wiley, Germany, 2001), p. 236Google Scholar
  45. 45.
    M. Zhiani, S. Majidi, H. Rostami, M.M. Taghiabadi, Comparative study of aliphatic alcohols electrooxidation on zero-valent palladium complex for direct alcohol fuel cells. Int. J. Hydrog. Energy 40(1), 568–576 (2015)CrossRefGoogle Scholar
  46. 46.
    D. Basu, S. Basu, Synthesis and characterization of Pt–Au/C catalyst for glucose electro-oxidation for the application in direct glucose fuel cell. Int. J. Hydrog. Energy 36(22), 14923–14929 (2011)CrossRefGoogle Scholar
  47. 47.
    M. Zhiani, S. Majidi, M.M. Taghiabadi, Fuel cells 13, 946 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Zhiani
    • 1
    Email author
  • Amir Abedini
    • 1
  • Somayeh Majidi
    • 1
    • 2
  1. 1.Department of ChemistryIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Chemistry, Faculty of Sciences, Najafabad BranchIslamic Azad UniversityNajafabadIran

Personalised recommendations