Advertisement

Preparation and Voltammetric Application of a Zr(IV) Functionalized Spongolite for the Electrocatalytic Oxidation of Hydrazine

  • Devaney Ribeiro do Carmo
  • Tamires Rocha Souza
  • Vitor Alexandre Maraldi
  • Tayla Fernanda Serantoni da Silveira
Original Research
  • 5 Downloads

Abstract

This study demonstrates an additional exploration of the possibilities of modifying the surface of spongolite spicules, a biogenic silica, in order to prepare natural inorganic composites for application in catalytic oxidation processes. In this context, a novel hybrid material was synthesized from the inorganofunctionalization of a spongolite with zirconium(IV) (EZr). This material was then reacted with potassium hexacyanoferrate(III) and applied in a subsequent reaction with copper ions. The obtained material (EZrCuH) was characterized by scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), and cyclic voltammetry (CV). The CV of the graphite paste modified with EZrCuH exhibited two redox couples with midpoint potentials (Eθ′) equal to 0.36 and 0.74 V, attributed to the CuI/CuII and FeII(CN)6/FeIII(CN)6 processes (1.0 mol L−1, KCl pH 7.0, v = 20 mV s−1), respectively. The EZrCuH-modified graphite paste electrode presented electrocatalytic activity in the oxidation of different hydrazine concentrations and an analytical curve with a linear response of 8.0 × 10−7 to 4.0 × 10−5 mol L−1 (R2 = 0.999, relative standard deviation = ± 2% (n = 3)), and limit of detection of 8.33 × 10−7 mol L−1 and an amperometric sensitivity of 8.21 mA mol−1 L−1. Therefore, this material can be considered as a potential candidate for the manufacturing of electrochemical sensors intended for the easy and rapid detection of hydrazine substances.

Graphical abstract

FEG-SEM images of spongolite and all chemical modifications and their electrocatalytic behavior

Keywords

Spongolite Zirconium(IV) Graphite paste electrode Hydrazine 

Notes

Funding

The authors are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP - Proc. 2013/08495-9) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57(4), 603–619 (1985)CrossRefGoogle Scholar
  2. 2.
    X. Du, E. Wu, Porosity of microporous zeolites A, X and ZSM-5 studied by small angle X-ray scattering and nitrogen adsorption. J Phys Chem Solids 68(9), 1692–1699 (2007)CrossRefGoogle Scholar
  3. 3.
    L. Qian, Z.F. Yan, Micropore modification of zeolites with transition-metal oxides. Colloids Surf. A Physicochem. Eng. Asp. 180(3), 311–316 (2001)CrossRefGoogle Scholar
  4. 4.
    F.T. Cruz, D. Cardoso, Quim Nova 37, 761 (2014)Google Scholar
  5. 5.
    T. Yokoi, Y. Kubota, T. Tatsumi, Amino-functionalized mesoporous silica as base catalyst and adsorbent. Appl. Catal. A Gen. 421-422, 14–37 (2012)CrossRefGoogle Scholar
  6. 6.
    R. Cademartiri, M.A. Brook, R. Pelton, J.D. Brennan, J Mater Chem 19, 1583 (2009)CrossRefGoogle Scholar
  7. 7.
    A.C.S. Almeida, A.F.D.C. Varajão, N.S. Gomes, C.A.C. Varajão, C. Volkmer-Ribeiro, Characterization and origin of spongillite-hosting sediment from João Pinheiro, Minas Gerais, Brazil. J. S. Am. Earth Sci. 29(2), 439–453 (2010)CrossRefGoogle Scholar
  8. 8.
    C. Volkmer-Ribeiro, J.F.M. Motta, Biociências 3, 145 (1995)Google Scholar
  9. 9.
    J.L.L. Silva, O espongilito de Três Lagoas, MS, Tese (Doutorado em Geologia) (Universidade do Vale do Rio dos Sinos, São Leopoldo, 2004), p. 121Google Scholar
  10. 10.
    K.A. Venkatesan, P.R. Vasudeva Rao, K. Štamberg, J Radioanalytical Nucl Chem 250(3), 477–484 (2001)CrossRefGoogle Scholar
  11. 11.
    A. Bortun, M. Bortun, J. Pardini, S.A. Khainakov, J.R. García, Effect of competitive ions on the arsenic removal by mesoporous hydrous zirconium oxide from drinking water. Mater. Res. Bull. 45(11), 1628–1634 (2010)CrossRefGoogle Scholar
  12. 12.
    J.P. Brunelle, Preparation of catalysts by metallic complex adsorption on mineral oxides. Pure Appl. Chem. 50(9-10), 1211–1229 (1978)CrossRefGoogle Scholar
  13. 13.
    M.B. Gholivand, A. Azadbakht, A novel hydrazine electrochemical sensor based on a zirconium hexacyanoferrate film-bimetallic Au–Pt inorganic–organic hybrid nanocomposite onto glassy carbon-modified electrode. Electrochim. Acta 56(27), 10044–10054 (2011)CrossRefGoogle Scholar
  14. 14.
    M.M. Ardakani, M.A. Karimi, M.M. Zare, S.M. Mirdehghan, Int. J. Electrochem. Sci. 3, 246 (2008)Google Scholar
  15. 15.
    K.I. Ozoemena, anodic oxidation and amperometric sensing of hydrazine at a glassy carbon electrode modified with cobalt (II) phthalocyanine–cobalt (II) tetraphenylporphyrin (CoPc- (CoTPP)4) supramolecular complex. Sensors 6(8), 874–891 (2006)CrossRefGoogle Scholar
  16. 16.
    H. Sun, L. Dong, H. Yu, M. Huo, Direct electrochemical oxidation and detection of hydrazine on a boron doped diamond (BDD) electrode. Russ. J. Electrochem. 49(9), 883–887 (2013)CrossRefGoogle Scholar
  17. 17.
    J. Li, H. Xie, L. Chen, A sensitive hydrazine electrochemical sensor based on electrodeposition of gold nanoparticles on choline film modified glassy carbon electrode. Sensors Actuators B Chem 153(1), 239–245 (2011)CrossRefGoogle Scholar
  18. 18.
    X.Y. Qi, N.O. Keyhani, Y.C. Lee, Spectrophotometric determination of hydrazine, hydrazides, and their mixtures with trinitrobenzenesulfonic acid. Anal. Biochem. 175(1), 139–144 (1988)CrossRefGoogle Scholar
  19. 19.
    J.A. Oh, J.H. Park, H.S. Shin, Sensitive determination of hydrazine in water by gas chromatography–mass spectrometry after derivatization with ortho-phthalaldehyde. Anal. Chim. Acta 769, 79–83 (2013)CrossRefGoogle Scholar
  20. 20.
    S. Ikeda, H. Satake, Rapid method for the micro-determination of hydrazine by amperometric titration with potassium iodate. Anal. Lett. 11(5), 403–413 (1978)CrossRefGoogle Scholar
  21. 21.
    A. Ameen, M.S. Akhtar, H.S. Shin, Hydrazine chemical sensing by modified electrode based on in situ electrochemically synthesized polyaniline/graphene composite thin film. Sensors Actuators B Chem 173, 177–183 (2012)CrossRefGoogle Scholar
  22. 22.
    A. Abbaspour, A. Khajehzadeh, A. Ghaffarinejad, Electrocatalytic oxidation and determination of hydrazine on nickel hexacyanoferrate nanoparticles-modified carbon ceramic electrode. J Electroanal Chem (Lausanne) 631(1-2), 52–57 (2009)CrossRefGoogle Scholar
  23. 23.
    S.J. Sophia, S. Devi, K. Pandian, Int. J. Electrochem. Sci. 7, 6580 (2012)Google Scholar
  24. 24.
    H. Razmi-Nerbin, M.H. Pournaghi-Azar, Nickel pentacyanonitrosylferrate film modified aluminum electrode for electrocatalytic oxidation of hydrazine. J. Solid State Electrochem. 6(2), 126–133 (2002)CrossRefGoogle Scholar
  25. 25.
    Z. Yin, L. Liu, Z. Yang, An amperometric sensor for hydrazine based on nano-copper oxide modified electrode. J. Solid State Electrochem. 15(4), 821–827 (2011)CrossRefGoogle Scholar
  26. 26.
    N. Nasirizadeh, H.R. Zare, A.R. Fakhari, H. Ahmar, M.R. Ahmadzadeh, A. Naeimi, A study of the electrochemical behavior of an oxadiazole derivative electrodeposited on multi-wall carbon nanotube-modified electrode and its application as a hydrazine sensor. J. Solid State Electrochem. 15(11-12), 2683–2693 (2011)CrossRefGoogle Scholar
  27. 27.
    V.V. Kondratiev, T.A. Babkova, E.G. Tolstopjatova, PEDOT-supported Pd nanoparticles as a catalyst for hydrazine oxidation. J. Solid State Electrochem. 17(6), 1621–1630 (2013)CrossRefGoogle Scholar
  28. 28.
    P. Muthukumar, S.A. John, Efficient oxidation of hydrazine using amine-functionalized cobalt and nickel porphyrin-modified electrodes. J. Solid State Electrochem. 18(9), 2393–2400 (2014)CrossRefGoogle Scholar
  29. 29.
    R. Ojani, S. Safshekan, J.-B. Raoof, Photoelectrochemical oxidation of hydrazine on TiO2 modified titanium electrode: its application for detection of hydrazine. J. Solid State Electrochem. 18(3), 779–783 (2014)CrossRefGoogle Scholar
  30. 30.
    A. Omrani, A.A. Rostami, A. Emamgholizadeh, Electrocatalytically active nanocomposite carbon paste electrode modified with SiO2/poly (P-phenylendiamine) core/shell nanoparticles: application toward electro-oxidation of hydrazine. J. Solid State Electrochem. 19(2), 585–592 (2015)CrossRefGoogle Scholar
  31. 31.
    R.M. Silverstein, F.X. Webster, D.J. Kiemle, Spectrometric Identification of Organic Compounds (Wiley, New York, 2005)Google Scholar
  32. 32.
    P. Yin, Y. Tian, Z. Wang, R. Qu, X. Liu, Q. Xu, Q. Tang, Synthesis of functionalized silica gel with poly(diethylenetriamine bis(methylene phosphonic acid)) and its adsorption properties of transition metal ions. Mater. Chem. Phys. 129(1-2), 168–175 (2011)CrossRefGoogle Scholar
  33. 33.
    A.G.S. Prado, E.A. Faria, P.M. Padilha, Aplicação e modificação química da sílica gel obtida de areia. Quim Nova 28(3), 544–547 (2005)CrossRefGoogle Scholar
  34. 34.
    D.L. Pavia, G.M. Lampman, G.S. Kriz, J.R. Vyvyan, Introdução à espectroscopia (Cengage Learning, São Paulo, 2012)Google Scholar
  35. 35.
    R.K. Iler, The Chemistry of Silica (Willey, New York, 1979)Google Scholar
  36. 36.
    A. Abbaspour, A. Ghaffarinejad, Electrocatalytic oxidation of l-cysteine with a stable copper–cobalt hexacyanoferrate electrochemically modified carbon paste electrode. Electrochim. Acta 53(22), 6643–6650 (2008)CrossRefGoogle Scholar
  37. 37.
    D. Engel, E.W. Grabner, Copper hexacyanoferrate-modified glassy carbon: a novel type of potassium-selective electrode. Ber. Bunsenges. Phys. Chem. 89(9), 982–986 (1985)CrossRefGoogle Scholar
  38. 38.
    A. Doménech-Carbó, Theoretical scenarios for the electrochemistry of porous silicate-based materials: an overview. J. Solid State Electrochem. 19(7), 1887–1903 (2015)CrossRefGoogle Scholar
  39. 39.
    D. Jayasri, S.S. Narayanan, Electrocatalytic oxidation and amperometric determination of BHA at graphite–wax composite electrode with silver hexacyanoferrate as electrocatalyst. Sensors Actuators B Chem 119(1), 135–142 (2006)CrossRefGoogle Scholar
  40. 40.
    D.R. Carmo, R.M. Silva, N.R. Stradiotto, Estudo eletroquímico de Fe[Fe(CN)5NO] em eletrodo de pasta de grafite. Eclet Quim J 27(spe), 197–210 (2002)CrossRefGoogle Scholar
  41. 41.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 1980)Google Scholar
  42. 42.
    R. Ojani, V. Rahemi, J.-B. Raoof, A new voltammetric sensor for hydrazine based on michael addition reaction using 1-amino-2-naphtol-4-sulfonic acid. J. Chin. Chem. Soc. 62(1), 90–96 (2015)CrossRefGoogle Scholar
  43. 43.
    J.-B. Raoof, R. Ojani, Z. Mohammadpour, Int. J. Electrochem. Sci. 5(2), 177 (2010)Google Scholar
  44. 44.
    C.D.C. Conceição, R.C. Faria, O. Fatibello-Filho, A.A. Tanaka, Electrocatalytic oxidation and voltammetric determination of hydrazine in industrial boiler feed water using a cobalt phthalocyanine-modified electrode. Anal. Lett. 41(6), 1010–1021 (2008)CrossRefGoogle Scholar
  45. 45.
    A.A. Ensafi, M. Lotfi, H. Karimi-Maleh, New modified-multiwall carbon nanotubes paste electrode for electrocatalytic oxidation and determination of hydrazine using square wave voltammetry. Chin. J. Catal. 33(3), 487–493 (2012)CrossRefGoogle Scholar
  46. 46.
    D. Jayasri, S.S. Narayanan, Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite–wax composite electrode. J. Hazard. Mater. 144(1–2), 348–354 (2007)CrossRefGoogle Scholar
  47. 47.
    J. Zheng, Q. Sheng, L. Li, Y. Shen, J Electroanal Chem (Lausanne) 611(1–2), 155 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Devaney Ribeiro do Carmo
    • 1
  • Tamires Rocha Souza
    • 1
  • Vitor Alexandre Maraldi
    • 1
  • Tayla Fernanda Serantoni da Silveira
    • 1
    • 2
  1. 1.Faculdade de Engenharia de Ilha Solteira, Departamento de Física e QuímicaUniversidade Estadual Paulista “Júlio de Mesquita Filho”Ilha SolteiraBrazil
  2. 2.Instituto de QuímicaUniversidade Federal de Mato Grosso do SulCampo GrandeBrazil

Personalised recommendations