Advertisement

Electrocatalysis

, Volume 9, Issue 6, pp 689–696 | Cite as

Porphyrin-Based Electrochemical H2 Evolution: Role of Central Metal Ion on Overpotential and Catalytic Activity

  • Belete B. Beyene
  • Chen-Hsiung Hung
Original Research
  • 141 Downloads

Abstract

Various transition metal complexes of porphyrins, M-meso-tetrakis-(p-NH2phenyl)porphyrins [where M = Fe, Co, Ni, and Cu] have been synthesized and employed for electrochemical H2 evolution studies. The effects of nature of central metal ion in H2 evolution activity and overpotential were explored by conducting activity study in DMSO using organic acid and H2O as a proton source. In organic acid (trifluoroacetic acid, TFA), the catalysis occurs at a potential close to M2+/M1+ redox couple only for Co and Cu while at a more –ve potential (close to M1+/M0 redox event) for Fe and Ni with activity order of Co > Fe > Cu > Ni. At low acid concentration catalytic efficiency (C.E) of 85%, observed rate constant (kobs) of 240 s−1 and a current enhancement (Icat/Ip) of 29 are obtained for Co complex. In neutral aqueous solution, high activities were also observed for Co and Fe complexes than others. Based on our results, the redox potential of central metal ion and thermodynamic reduction potential of a proton source seem to play roles in tuning catalytic activity.

Graphical Abstract

Keywords

Metallo porphyrins Elctrocatalysis Hydrogen evolution Overpotential 

Supplementary material

12678_2018_477_MOESM1_ESM.docx (11.8 mb)
ESM 1 (DOCX 12036 kb)

References

  1. 1.
    M. Nippe, R.S. Khnayzer, J.A. Panetier, D.Z. Zee, B.S. Olaiya, M. Head-Gordon, C.J. Chang, F.N. Castellano, J.R. Long, Chem. Sci. 4, 3934 (2013)CrossRefGoogle Scholar
  2. 2.
    V. Artero, M. Chavarot-Kerlidou, M. Fontecave, Angew. Chem. Int. Ed. 50, 7238 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Rakowski Dubois, D.L. Dubois, Acc. Chem. Res. 42, 1974 (2009)CrossRefPubMedGoogle Scholar
  4. 4.
    M. Wang, L. Chen, L. Sun, Energy Environ. Sci. 5, 6763 (2012)CrossRefGoogle Scholar
  5. 5.
    P. Du, R. Eisenberg, Energy Environ. Sci. 5, 6012 (2012)CrossRefGoogle Scholar
  6. 6.
    Stillman, J. Am. Chem. Soc. 129, 1471 (2007)CrossRefGoogle Scholar
  7. 7.
    T. Nyokong, N4-macrocyclic metal complexes (Springer, 2006), p. 315Google Scholar
  8. 8.
    S.C. Marinescu, J.R. Winkler, H.B. Gray, Proc. Natl. Acad. Sci. U. S. A. 109, 15127 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    X. Hu, B.S. Brunschwig, J.C. Peters, J. Am. Chem. Soc. 129, 8988 (2007)CrossRefPubMedGoogle Scholar
  10. 10.
    C.V. Krishnan, N. Sutin, J. Am. Chem. Soc. 103, 2141 (1981)CrossRefGoogle Scholar
  11. 11.
    V. Houlding, T. Geiger, U. Kolle, M. Gratzel, J. Chem. Soc. Chem. Commun. 681 (1982)Google Scholar
  12. 12.
    B.B. Beyene, S.B. Mane, C.-H. Hung, Chem. Commun. 51, 15067 (2015)CrossRefGoogle Scholar
  13. 13.
    B.B. Beyene, S.B. Mane, M. Leonardus, C.-H. Hung, ChemistrySelect 2, 10565 (2017)CrossRefGoogle Scholar
  14. 14.
    J.C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet, Chem. Rev. 107, 4273 (2007)CrossRefPubMedGoogle Scholar
  15. 15.
    A. Volbeda, M.-H. Charon, C. Piras, E.C. Hatchikian, M. Frey, J.C. Fontecilla-Camps, Nature 373, 580 (1995)CrossRefPubMedGoogle Scholar
  16. 16.
    Y. Ohki, K. Yasumura, K. Kuge, S. Tanino, M. Ando, Z. Li, K. Tatsumi, Proc. Natl. Acad. Sci. U. S. A. 105, 7652 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    C. Tard, C.J. Pickett, Chem. Rev. 109, 2245 (2009)CrossRefPubMedGoogle Scholar
  18. 18.
    J.W. Tye, J. Lee, H.-W. Wang, R. Mejia-Rodriguez, J.H. Reibenspies, M.B. Hall, M.Y. Darensbourg, Inorg. Chem. 44, 5550 (2005)CrossRefPubMedGoogle Scholar
  19. 19.
    C. Topf, U. Monkowius, G. Knör, Inorg. Chem. Commun. 21, 147 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    F. Gärtner, A. Boddien, E. Barsch, K. Fumino, S. Losse, H. Junge, D. Hollmann, A. Brückner, R. Ludwig, M. Beller, Chem. Eur. J. 17, 6425 (2011)CrossRefPubMedGoogle Scholar
  21. 21.
    J. Zhao, P.D. Tran, Y. Chen, J.S.C. Loo, J. Barber, Xu, Z. J. ACS Catal. 5, 4115 (2015)CrossRefGoogle Scholar
  22. 22.
    D. Sirbu, C. Turta, E.A. Gibson, A.C. Benniston, Dalton Trans. 44, 14646 (2015)CrossRefPubMedGoogle Scholar
  23. 23.
    P.D. Tran, M. Nguyen, S.S. Pramana, A. Bhattacharjee, S.Y. Chiam, J. Fize, M.J. Field, V. Artero, L.H. Wong, J. Loo, J. Barber, Energy Environ. Sci. 5, 8912 (2012)CrossRefGoogle Scholar
  24. 24.
    P. Zhang, M. Wang, Y. Yang, T. Yao, L. Sun, Angew. Chem. Int. Ed. 53, 13803 (2014)CrossRefGoogle Scholar
  25. 25.
    A. Datta, K. Das, B.B. Beyene, E. Garribba, M.J. Gajewska, C.-H. Hung, Mol. Catal. 439, 81 (2017)CrossRefGoogle Scholar
  26. 26.
    J.A.S. Roberts, R.M. Bullock, Inorg. Chem. 52, 3823 (2013)CrossRefPubMedGoogle Scholar
  27. 27.
    A.D. Adler, F.R. Longo, J.D. Finarelli, J. Goldmacher, J. Assour, L. Korsakoff, The Journal of Organic Chemistry 32, 476 (1967)CrossRefGoogle Scholar
  28. 28.
    K.-L. Cheng, H.-W. Li, D.K.P. Ng, J. Organomet. Chem. 689, 1593 (2004)CrossRefGoogle Scholar
  29. 29.
    B. Zimmer, V. Bulach, C. Drexler, S. Erhardt, M.W. Hosseini, A. De Cian, New J. Chem. 26, 43 (2002)CrossRefGoogle Scholar
  30. 30.
    E.C.A. Ojadi, H. Linschitz, M. Gouterman, R.I. Walter, J.S. Lindsey, R.W. Wagner, P.R. Droupadi, W. Wang, J. Phys. Chem. 97, 13192 (1993)CrossRefGoogle Scholar
  31. 31.
    M. Lan, H. Zhao, H. Yuan, C. Jiang, S. Zuo, Y. Jiang, Dyes Pigments 74, 357 (2007)CrossRefGoogle Scholar
  32. 32.
    J.P. Bigi, T.E. Hanna, W.H. Harman, A. Chang, C.J. Chang, Chem. Commun. 46, 958 (2010)CrossRefGoogle Scholar
  33. 33.
    J. Organomet. Chem. 694, IFC (2009)Google Scholar
  34. 34.
    R.M. Bullock, A.M. Appel, M.L. Helm, Chem. Commun. 50, 3125 (2014)CrossRefGoogle Scholar
  35. 35.
    M.P. Stewart, M.-H. Ho, S. Wiese, M.L. Lindstrom, C.E. Thogerson, S. Raugei, R.M. Bullock, M.L. Helm, J. Am. Chem. Soc. 135, 6033 (2013)CrossRefPubMedGoogle Scholar
  36. 36.
    C. Canales, F. Varas-Concha, T.E. Mallouk, G. Ramírez, Appl. Catal. B Environ. 188, 169 (2016)CrossRefGoogle Scholar
  37. 37.
    C.H. Lee, D.K. Dogutan, D.G. Nocera, J. Am. Chem. Soc. 133, 8775 (2011)CrossRefPubMedGoogle Scholar
  38. 38.
    D.K. Dogutan, D.K. Bediako, D.J. Graham, C.M. Lemon, D.G. Nocera, J. Porphyrins Phthalocyanines 19, 1 (2015)CrossRefGoogle Scholar
  39. 39.
    E.S. Wiedner, A.M. Appel, D.L. DuBois, R.M. Bullock, Inorg. Chem. 52, 14391 (2013)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of ChemistryAcademia SinicaTaipeiTaiwan
  2. 2.Department of ChemistryBahir Dar UniversityBahir DarEthiopia

Personalised recommendations