, Volume 9, Issue 6, pp 682–688 | Cite as

Electrodeposited Ternary Fe-Mo-P as an Efficient Electrode Material for Bifunctional Water Splitting in Neutral pH

  • Abheek Datta
  • Ramesh Kumar Singh
  • Hanan Teller
  • Shmuel Rozenfeld
  • Rivka Cahan
  • Alex SchechterEmail author
Original Research


Designing novel and cost-effective material for electrochemical water splitting in neutral pH are highly essential for the hydrogen production and useful fuel cell construction. Synthesis of the bifunctional and earth-abundant efficient catalyst systems for the same remains one of the biggest challenges to the science community. Herein, we report the electrodeposition of ternary Fe-Mo-P onto the surface of carbon cloth material to form a stable and highly active bifunctional catalyst towards electrochemical hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at pH 7. A set of catalysts were prepared by varying the relative atomic ratio of the elements and the best catalytic activity was observed with 60 atomic % Fe in the electroplating bath which rivals that of Pt/C in the overall electrochemical water splitting. The best catalyst also shows 24-h stability in the overall electrochemical splitting of water which indicates the potential of this class of materials.

Graphical Abstract


Electrodeposition Bifunctional catalyst Electrochemical water splitting Neutral pH OER HER 


Funding Information

This research was supported by the Research Authority of Ariel University, Israel, and the Israel Ministry of National Infrastructures, Energy and Water Recourses (grant number: 216-11-015).


  1. 1.
    N. Xu, G. Cao, Z. Chen, Q. Kang, H. Dai, P. Wang, Cobalt nickel boride as an active electrocatalyst for water splitting. J. Mater. Chem. A 5(24), 12379–12384 (2017)CrossRefGoogle Scholar
  2. 2.
    K. Kwak, W. Choi, Q. Tang, M. Kim, Y. Lee, D. Jiang, D. Lee, A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat. Commun. 8, 14723 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    M.M. Najafpour, A. Shirazi Amin, S.E. Balaghi, B. Deljoo, Y. Mousazade, T. Jafari, M. Aindow, S.L. Suib, Transformation of La 0.65 Sr 0.35 MnO 3 in electrochemical water oxidation. Int. J. Hydrog. Energy 42(12), 8560–8568 (2017)CrossRefGoogle Scholar
  4. 4.
    I. Spanos, A.A. Auer, S. Neugebauer, X. Deng, H. Tüysüz, R. Schlögl, Standardized benchmarking of water splitting catalysts in a combined electrochemical flow cell/inductively coupled plasma–optical emission spectrometry (ICP-OES) setup. ACS Catal. 7(6), 3768–3778 (2017)CrossRefGoogle Scholar
  5. 5.
    M.M. Younan, I.H.M. Aly, M.T. Nageeb, J. Appl. Electrochem. 32(4), 439–446 (2002)CrossRefGoogle Scholar
  6. 6.
    D.R. Liyanage, D. Li, Q. Cheek, H. Baydoun, S.L. Brock, Synthesis and oxygen evolution reaction (OER) catalytic performance of Ni2−xRuxP nanocrystals: enhancing activity by dilution of the noble metal. J. Mater. Chem. A 5(33), 17609–17618 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Zhan, M. Lu, S. Yang, Z. Liu, J.Y. Lee, The origin of catalytic activity of nickel phosphate for oxygen evolution in alkaline solution and its further enhancement by iron substitution. ChemElectroChem 3(4), 615–621 (2016)CrossRefGoogle Scholar
  8. 8.
    T. Mittermeier, P. Madkikar, X. Wang, H.A. Gasteiger, M. Piana, Probing transition-metal silicides as PGM-free catalysts for hydrogen oxidation and evolution in acidic medium. Materials 10(6), 661 (2017)CrossRefPubMedCentralGoogle Scholar
  9. 9.
    A. Dutta, N. Pradhan, Developments of metal phosphides as efficient OER precatalysts. J. Phys. Chem. Lett. 8(1), 144–152 (2017)CrossRefPubMedGoogle Scholar
  10. 10.
    F. Hu, S. Zhu, S. Chen, Y. Li, L. Ma, T. Wu, Y. Zhang, C. Wang, C. Liu, X. Yang, L. Song, X. Yang, Y. Xiong, Adv. Mater. 29, 1 (2017)Google Scholar
  11. 11.
    C. Tang, L. Gan, R. Zhang, W. Lu, X. Jiang, A.M. Asiri, X. Sun, J. Wang, L. Chen, Ternary FexCo1–xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight. Nano Lett. 16(10), 6617–6621 (2016)CrossRefPubMedGoogle Scholar
  12. 12.
    X. Fang, L. Jiao, R. Zhang, H.L. Jiang, Porphyrinic metal–organic framework-templated Fe–Ni–P/reduced graphene oxide for efficient electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 9(28), 23852–23858 (2017)CrossRefPubMedGoogle Scholar
  13. 13.
    B. Zhang, Y.H. Lui, L. Zhou, X. Tang, S. Hu, An alkaline electro-activated Fe–Ni phosphide nanoparticle-stack array for high-performance oxygen evolution under alkaline and neutral conditions. J. Mater. Chem. A 5(26), 13329–13335 (2017)CrossRefGoogle Scholar
  14. 14.
    F. Safizadeh, N. Sorour, E. Ghali, G. Houlachi, Study of the hydrogen evolution reaction on Fe–Mo–P coatings as cathodes for chlorate production. Int. J. Hydrog. Energy 42(8), 5455–5463 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Teller, O. Krichevski, M. Gur, A. Gedanken, A. Schechter, Ruthenium phosphide synthesis and electroactivity toward oxygen reduction in acid solutions. ACS Catal. 5(7), 4260–4267 (2015)CrossRefGoogle Scholar
  16. 16.
    J. Yu, Q. Li, Y. Li, C.Y. Xu, L. Zhen, V.P. Dravid, J. Wu, Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv. Funct. Mater. 26(42), 7644–7651 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Han, H. Chen, H. Zhang, Z. Sun, P. Du, Ternary metal phosphide nanosheets as a highly efficient electrocatalyst for water reduction to hydrogen over a wide pH range from 0 to 14. J. Mater. Chem. A 4(26), 10195–10202 (2016)CrossRefGoogle Scholar
  18. 18.
    Y. Wang, B. Kong, D. Zhao, H. Wang, C. Selomulya, Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 15, 26–55 (2017)CrossRefGoogle Scholar
  19. 19.
    K. Ojha, M. Sharma, H. Kolev, A.K. Ganguli, Reduced graphene oxide and MoP composite as highly efficient and durable electrocatalyst for hydrogen evolution in both acidic and alkaline media. Catal. Sci. Technol. 7(3), 668–676 (2017)CrossRefGoogle Scholar
  20. 20.
    X. Liang, D. Zhang, Z. Wu, D. Wang, The Fe-promoted MoP catalyst with high activity for water splitting. Appl. Catal. A Gen. 524, 134–138 (2016)CrossRefGoogle Scholar
  21. 21.
    F. Safizadeh, N. Sorour, E. Ghali, G. Houlachi, Corrosion behavior of Fe-Mo and Fe-Mo-P cathodic coatings in the simulated electrolyte for sodium chlorate production. Electrochim. Acta 269, 340–349 (2018)CrossRefGoogle Scholar
  22. 22.
    R.K. Shervedani, A. Lasia, Study of the hydrogen evolution reaction on Ni-Mo-P electrodes in alkaline solutions. J. Electrochem. Soc. 145(7), 2219 (1998)CrossRefGoogle Scholar
  23. 23.
    S.F. Cafarova, A.S. Aliyev, M. Elrouby, N. Soltanova, D.B. Tagiyev, J. Electrochem, Sci. Eng. 5, 231 (2016)Google Scholar
  24. 24.
    D. Kosugi, T. Hagio, Y. Kamimoto, R. Ichino, Effect of the addition of molybdenum on the structure and corrosion resistance of zinc–iron plating. Coatings 7(12), 235 (2017)CrossRefGoogle Scholar
  25. 25.
    L. Xie, R. Zhang, L. Cui, D. Liu, S. Hao, Y. Ma, G. Du, A.M. Asiri, X. Sun, High-performance electrolytic oxygen evolution in neutral media catalyzed by a cobalt phosphate nanoarray. Angew. Chem. Int. Ed. 56(4), 1064–1068 (2017)CrossRefGoogle Scholar
  26. 26.
    L. Xie, F. Qu, Z. Liu, X. Ren, S. Hao, R. Ge, G. Du, A.M. Asiri, X. Sun, L. Chen, In situ formation of a 3D core/shell structured Ni3N@Ni–Bi nanosheet array: an efficient non-noble-metal bifunctional electrocatalyst toward full water splitting under near-neutral conditions. J. Mater. Chem. A 5(17), 7806–7810 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Hou, Y. Sun, S. Cao, Y. Wu, H. Chen, L. Sun, Graphene dots embedded phosphide nanosheet-assembled tubular arrays for efficient and stable overall water splitting. ACS Appl. Mater. Interfaces 9(29), 24600–24607 (2017)CrossRefPubMedGoogle Scholar
  28. 28.
    T. Liu, L. Xie, J. Yang, R. Kong, G. Du, A.M. Asiri, X. Sun, L. Chen, Self-standing CoP nanosheets array: a three-dimensional bifunctional catalyst electrode for overall water splitting in both neutral and alkaline media. ChemElectroChem 4(8), 1840–1845 (2017)CrossRefGoogle Scholar
  29. 29.
    Y. Teng, X.-D. Wang, H.-Y. Chen, J.-F. Liao, W.-G. Li, D.-B. Kuang, Iron-assisted engineering of molybdenum phosphide nanowires on carbon cloth for efficient hydrogen evolution in a wide pH range. J. Mater. Chem. A 5(43), 22790–22796 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical SciencesAriel UniversityArielIsrael
  2. 2.Department of Chemical Engineering & BiotechnologyAriel UniversityArielIsrael

Personalised recommendations