, Volume 9, Issue 6, pp 673–681 | Cite as

Electro-oxidation of Glycerol on Carbon Supported Pt75CoxNi25-x (x = 0, 0.9, 12.5, 24.1 and 25) Catalysts in an Alkaline Medium

  • Vanessa M. F. de Araujo
  • Ermete Antolini
  • Leandro A. Pocrifka
  • Raimundo R. PassosEmail author
Original Research


Binary and ternary Pt75CoxNi25-x/C (x = 0, 0.9, 12.5, 24.1, and 25) electrocatalysts were prepared by a polyol method, and their activity for carbon monoxide and glycerol oxidation in alkaline media was compared to that of a conventional Pt/C catalyst. Formation of partially alloyed catalysts was detected by XRD analysis, with the most part of the non-precious metals in a non-alloyed form. The onset potential for carbon monoxide and glycerol oxidation on binary and ternary Pt75CoxNi25-x/C catalysts was lower than that on Pt/C. The higher activity for glycerol oxidation of the Pt75Co0.9Ni24.1/C and Pt75Co12.5Ni12.5/C catalysts than that of the parent binary catalysts was ascribed to the formation of highly active CoxNi1-x(OH)2/CoxNi1-xOOH redox couples with a Co/Ni atomic ratio ≤ 1. Conversely, the replacement of a small amount of Co (0.9 at.%) by Ni did not increase the glycerol oxidation activity of the resulting Pt75Co24.1Ni0.9/C catalyst. The higher activity for glycerol oxidation of Pt75Co12.5Ni12.5/C than that of Pt75Co0.9Ni24.1/C for potentials > 0.7 V vs. RHE, despite the lower Ni-based oxide content and the higher particle size, indicated that at these potentials, the Co12.5Ni12.5(OH)2/Co12.5Ni12.5OOH redox couple is more active for glycerol oxidation than the Co0.9Ni24.1/Co0.9Ni24.1OOH redox couple.

Graphical Abstract


Glycerol oxidation activity Supported catalysts Pt-Co/C, Pt-Ni/C, Pt75CoxNi25-x/C electrocatalysts 


Funding Information

The authors thank CNPq (Grant Nos. 554613/2010-7 and 456336/2013-3), FAPEAM, and CAPES for funding this study.


  1. 1.
    R. Dillon, S. Srinivasan, A.S. Aricò, V. Antonucci, International activities in DMFC R&D: status of technologies and potential applications. J. Power Sources 127(1-2), 112–126 (2004)CrossRefGoogle Scholar
  2. 2.
    A.V. Tripkovic, K.D. Popovic, B.N. Grgur, B. Blizanac, P.N. Ross, N.M. Markovic, Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochim. Acta 47(22-23), 3707–3714 (2002)CrossRefGoogle Scholar
  3. 3.
    E.H. Yu, K. Scott, Development of direct methanol alkaline fuel cells using anion exchange membranes. J. Power Sources 137(2), 248–256 (2004)CrossRefGoogle Scholar
  4. 4.
    J. Xuan, M.K.H. Leung, D.Y.C. Leung, M. Ni, A review of biomass-derived fuel processors for fuel cell systems. Renew. Sust. Energy Rev. 13(6-7), 1301–1313 (2009)CrossRefGoogle Scholar
  5. 5.
    L. Roquet, E.M. Belgsir, J.-M. Léger, C. Lamy, Kinetics and mechanisms of the electrocatalytic oxidation of glycerol as investigated by chromatographic analysis of the reaction products: potential and pH effects. Electrochim. Acta 39(16), 2387–2394 (1994)CrossRefGoogle Scholar
  6. 6.
    M. Simões, S. Baranton, C. Coutanceau, Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Appl. Catal. B Environ. 93(3-4), 354–362 (2010)CrossRefGoogle Scholar
  7. 7.
    Z. Zhang, L. Xin, J. Qi, D.J. Chadderdon, W. Li, Supported Pt, Pd and Au nanoparticle anode catalysts for anion-exchange membrane fuel cells with glycerol and crude glycerol fuels. Appl. Catal. B Environ. 136–137, 29–39 (2013)CrossRefGoogle Scholar
  8. 8.
    A.P. Nascimento, J.J. Linares, Performance of a direct glycerol fuel cell using KOH doped polybenzimidazole as electrolyte. J. Braz. Chem. Soc. 25, 509–516 (2014)Google Scholar
  9. 9.
    E. Frota, A. Purgatto, J.J. Linares, Pt/C, au/C and Pd/C catalysts for alkaline-based direct glycerol fuel cells. Chem. Eng. Trans. 41, 253–258 (2014)Google Scholar
  10. 10.
    C.A. Ottoni, C.E.D. Ramos, R.F.B. de Souza, S.G. da Silva, E.V. Spinace, A.O. Neto, Glycerol and ethanol oxidation in alkaline medium using PtCu/C electrocatalysts. Int. J. Electrochem. Sci. 13, 1893–1904 (2018)CrossRefGoogle Scholar
  11. 11.
    Y. Kim, H. Kim, W.B. Kim, PtAg nanotubes for electrooxidation of ethylene glycol and glycerol in alkaline media. Electrochem. Commun. 46, 36–39 (2014)CrossRefGoogle Scholar
  12. 12.
    B.T.X. Lam, M. Chiku, E. Higuchi, H. Inoue, PtAg nanoparticle electrocatalysts for the glycerol oxidation reaction in alkaline medium. Adv. Nanoparticles 5(03), 167–175 (2016)CrossRefGoogle Scholar
  13. 13.
    C. Dai, L. Sun, H. Liao, B. Khezri, R.D. Webster, A.C. Fisher, Z.J. Xu, Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles. J. Catal. 356, 14–21 (2017)CrossRefGoogle Scholar
  14. 14.
    N. Li, W.-Y. Xia, C.-W. Xu, S. Chen, Pt/C and Pd/C catalysts promoted by au for glycerol and CO electrooxidation in alkaline medium. J. Energy Institute 90(5), 725–733 (2017)CrossRefGoogle Scholar
  15. 15.
    A. Falase, K. Garcia, M. Main, C. Lau, P. Atanassov, Electrooxidation of ethylene glycol and glycerol by Pt based binary and ternary templated catalysts in alkaline media. ECS Trans. 41, 1681–1689 (2011)CrossRefGoogle Scholar
  16. 16.
    R.G. Da Silva, S.A. Neto, K.B. Kokoh, A.R. De Andrade, Electroconversion of glycerol in alkaline medium: from generation of energy to formation of value-added products. J. Power Sources 351, 174–182 (2017)CrossRefGoogle Scholar
  17. 17.
    C. Jin, J. Zhang, R. Dong, Q. Huo, Glycerol oxidation on Pd electrodes modified with Pt. Int. J. Electrochem. Sci. 9, 5743–5750 (2014)Google Scholar
  18. 18.
    A.C. Garcia, C. Morais, T.W. Napporn, K.B. Kokoh, G. Tremilios-Filho, Unexpected activity for glycerol electro-oxidation of nanostructured Pd–Pt and Pd–Pt–Ru catalysts. Chem Electro Chem 4, 1314–1319 (2017a)Google Scholar
  19. 19.
    Q. He, Y. Shen, K. Xiao, X.Q. Qiu, Alcohol electro-oxidation on platinum–ceria/graphene nanosheet in alkaline solutions. Int. J. Hydrog. Energy 41(45), 20709–20719 (2016)CrossRefGoogle Scholar
  20. 20.
    A.C. Garcia, E.B. Ferreira, V.V. Silva de Barros, J.J. Linares, G. Tremiliosi-Filho, PtAg/MnOx/C as a promising electrocatalyst for glycerol electro-oxidation in alkaline medium. J. Electroanal. Chem. 793, 188–196 (2017b)CrossRefGoogle Scholar
  21. 21.
    B. Habibi, N. Delnavaz, Electrooxidation of glycerol on nickel and nickel alloy (Ni–Cu and Ni–Co) nanoparticles in alkaline media. RSC Adv. 6(38), 31797–31806 (2016)CrossRefGoogle Scholar
  22. 22.
    V.L. Oliveira, C. Morais, K. Servat, T.W. Napporn, G. Tremiliosi-Filho, K.B. Kokoh, Glycerol oxidation on nickel based nanocatalysts in alkaline medium—identification of the reaction products. J. Electroanal. Chem. 703, 56–62 (2013)CrossRefGoogle Scholar
  23. 23.
    V.L. Oliveira, C. Morais, K. Servat, T.W. Napporn, G. Tremiliosi-Filho, K.B. Kokoh, Studies of the reaction products resulted from glycerol electrooxidation on Ni-based materials in alkaline medium. Electrochim. Acta 117, 255–262 (2014)CrossRefGoogle Scholar
  24. 24.
    K. Endo, K. Nakamura, Y. Katayama, T. Miura, Pt-Me (Me = Ir, Ru, Ni) binary alloys as an ammonia oxidation anode. Electrochim. Acta 49(15), 2503–2509 (2004)CrossRefGoogle Scholar
  25. 25.
    B.C. Beard, P.N. Ross, The structure and activity of Pt-Co alloys as oxygen reduction electrocatalysts. J. Electrochem. Soc. 137(11), 3368–3374 (1990)CrossRefGoogle Scholar
  26. 26.
    E. Antolini, J.R.C. Salgado, E.R. Gonzalez, Carbon supported Pt75M25 (M = Co, Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells. J. Electroanal. Chem. 580(1), 145–154 (2005)CrossRefGoogle Scholar
  27. 27.
    W. Xu, H. Zhang, G. Li, Z. Wu, Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell. Sci. Rep. 4, 5863 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    L.C. Silva-Junior, G. Maia, R.R. Passos, E.A. de Souza, G.A. Camara, M.J. Giz, Analysis of the selectivity of PtRh/C and PtRhSn/C to the formation of CO2 during ethanol electrooxidation. Electrochim. Acta 112, 612–619 (2013)CrossRefGoogle Scholar
  29. 29.
    V.L. Marinho, L.A. Pocrifka, R.R. Passos, Electrochemical study of PtRh/C and PtRhNi/C electrocatalysts for ethylene glycol oxidation. J. Solid State Electrochem. 22(5), 1517–1524 (2018)CrossRefGoogle Scholar
  30. 30.
    E. Antolini, Structural parameters of supported fuel cell catalysts: the effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance. Appl. Catal. B Environ. 181, 298–313 (2016)CrossRefGoogle Scholar
  31. 31.
    F. Colmati, E. Antolini, E.R. Gonzalez, Ethanol oxidation on a carbon-supported Pt75Sn25 electrocatalyst prepared by reduction with formic acid: effect of thermal treatment. Appl. Catal. B Environ. 73(1-2), 106–115 (2007)CrossRefGoogle Scholar
  32. 32.
    E. Antolini, E.R. Gonzalez, Alkaline direct alcohol fuel cells. J. Power Sources 195(11), 3431–3450 (2010)CrossRefGoogle Scholar
  33. 33.
    M. Fleshmann, K. Korinek, D. Pletcher, The oxidation of organic compounds at a nickel anode in alkaline solution. J. Electroanal. Chem. 31(1), 39–49 (1971)CrossRefGoogle Scholar
  34. 34.
    D. Pletcher, M. Fleischmann, K. Korinek, The oxidation of organic compounds at a cobalt electrode in alkaline media. J. Electroanal. Chem. 33(2), 478–479 (1971)CrossRefGoogle Scholar
  35. 35.
    M. Asgari, M. Ghannadi Maragheh, R. Davarkhah, E. Lohrasbi, A. Nozad Golikand, Electrocatalytic oxidation of methanol on the nickel–cobalt modified glassy carbon electrode in alkaline medium. Electrochim. Acta 59, 284–289 (2012)CrossRefGoogle Scholar
  36. 36.
    S.L. Goikovic, T.R. Vidakovic, D.R. Durovic, Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst. Electrochim. Acta 48(24), 3607–3614 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratório de Eletroquímica e Energia – LEEN, Departamento de QuímicaUniversidade Federal do AmazonasManausBrazil
  2. 2.Scuola di Scienza dei MaterialiGenoaItaly

Personalised recommendations