, Volume 9, Issue 6, pp 662–672 | Cite as

A Combined DFT and Experimental Investigation of Pt-Wrapped CoNi Nanoparticles for the Oxygen Reduction Reaction

  • E. Flores-Rojas
  • H. Cruz-MartínezEmail author
  • H. Rojas-Chávez
  • M. M. Tellez-Cruz
  • J. L. Reyes-Rodríguez
  • J. G. Cabañas-Moreno
  • P. CalaminiciEmail author
  • O. Solorza-FeriaEmail author
Original Research


CoNi bimetallic nanoparticles wrapped with Pt were the subject of a theoretical study and experimental validation for the oxygen reduction reaction (ORR). The computational study was carried to evaluate the effect of the core composition of the Pt-wrapped CoNi nanoparticles toward the ORR. For this purpose, Pt44 and ConNi6−n-Pt38 (0≤n≤6) octahedral nanoparticles were employed as models and the O and OH binding energies were taken into account to describe the ORR electrocatalytic activity. The experimental validation of these type of nanoparticles was performed considering two compositions (Co30Ni70-20Pt/C and Co70Ni30-20Pt/C). The ConNi6−n-Pt38 (0≤n≤6) nanoparticles exhibit O and OH adsorption energies weaker than the pure Pt44 nanoparticles, suggesting, therefore, a higher electrocatalytic activity for the CoNi-Pt with respect to one of elemental Pt nanoparticles. The electrochemical results confirm the theoretical prediction, showing that the Co30Ni70-20Pt/C and Co70Ni30-20Pt/C electrocatalysts present higher specific activities, 400% and 300%, above that of Pt/C, respectively, as well as mass activities 50% higher than the commercial Pt/C, taken as reference.

Graphical Abstract

Correlation between modeling and experimentation of CoNi bimetallic nanoparticles wrapped with Pt for the oxygen reduction reaction.


ADFT Reactivity Electrocatalytic activity High-energy milling Galvanic displacement 



E. F.-R., H. C.-M., M.M. T.-C., and J.L. R.-R. acknowledge CONACYT for their doctoral fellowships. Financial support from the CONACYT projects CB-252658 and 245920 is also gratefully acknowledged. Acknowledgement is given to the Laboratorio Avanzado de Nanoscopía Electrónica from Cinvestav (Dr. Daniel Bahena Uribe for STEM micrographs and Dr. Jorge Roque Puente for the SEM analysis).

Supplementary material

12678_2018_474_MOESM1_ESM.docx (252 kb)
ESM 1 (DOCX 252 kb)


  1. 1.
    ​T. Jacob, The Mechanism of Forming H2O from H2 and O2 over a Pt Catalyst via Direct Oxygen Reduction. Fuel Cells 6(3-4), 159–181 (2006)CrossRefGoogle Scholar
  2. 2.
    ​J. Wu, H. Yang, Platinum-Based Oxygen Reduction Electrocatalysts. Acc. Chem. Res. 46(8), 1848–1857 (2013)CrossRefPubMedGoogle Scholar
  3. 3.
    H. Cruz-Martínez, L. López-Sosa, O. Solorza-Feria, P. Calaminici, First-principles investigation of adsorption and dissociation of molecular oxygen on pure Pd, Ni-doped Pd and NiPd alloy clusters. Int. J. Hydrog. Energy 42(51), 30310–30317 (2017)CrossRefGoogle Scholar
  4. 4.
    F. Godínez-Salomón, C.P. Rhodes, K.S. Alcantara, Q. Zhu, S.E. Canton, H.A. Calderon, J.L. Reyes-Rodríguez, M.A. Leyva, O. Solorza-Feria, Tuning the oxygen reduction activity and stability of Ni(OH)2@Pt/C catalysts through controlling Pt surface composition, strain, and electronic structure. Electrochim. Acta 247, 958–969 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016)CrossRefPubMedGoogle Scholar
  6. 6.
    J.L. Reyes-Rodríguez, F. Godínez-Salomón, M.A. Leyva, O. Solorza-Feria, RRDE study on Co@Pt/C core–shell nanocatalysts for the oxygen reduction reaction. Int. J. Hydrog. Energy 38(28), 12634–12639 (2013)CrossRefGoogle Scholar
  7. 7.
    M.M. Tellez-Cruz, M.A. Padilla-Islas, J.F. Godínez-Salomón, L. Lartundo-Rojas, O. Solorza-Feria, Y-OH-decorated-Pt/C electrocatalyst for oxygen reduction reaction. Int. J. Hydrog. Energy 41(48), 23318–23328 (2016)CrossRefGoogle Scholar
  8. 8.
    M.T. Nguyen, R.H. Wakabayashi, M. Yang, H.D. Abruña, F.J. DiSalvo, Synthesis of carbon supported ordered tetragonal pseudo-ternary Pt 2 M′M″ (M = Fe, Co, Ni) nanoparticles and their activity for oxygen reduction reaction. J. Power Sources 280, 459–466 (2015)CrossRefGoogle Scholar
  9. 9.
    T. Yang, G. Cao, Q. Huang, Y. Ma, S. Wan, H. Zhao, N. Li, F. Yin, X. Sun, D. Zhang, M. Wang, Truncated octahedral platinum–nickel–iridium ternary electro-catalyst for oxygen reduction reaction. J. Power Sources 291, 201–208 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Li, Y. Lei, N. Sheng, T. Ohtsuka, Preparation of low-platinum-content platinum–nickel, platinum–cobalt binary alloy and platinum–nickel–cobalt ternary alloy catalysts for oxygen reduction reaction in polymer electrolyte fuel cells. J. Power Sources 294, 420–429 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Choi, Y. Lee, J. Kim, H. Lee, Enhancing stability of octahedral PtNi nanoparticles for oxygen reduction reaction by halide treatment. J. Power Sources 307, 883–890 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Choi, K.A. Kuttiyiel, J.P. Labis, K. Sasaki, G.G. Park, T.H. Yang, R.R. Adzic, Enhanced oxygen reduction activity of IrCu core platinum monolayer shell nano-electrocatalysts. Top. Catal. 56(12), 1059–1064 (2013)CrossRefGoogle Scholar
  13. 13.
    K.A. Kuttiyiel, K. Sasaki, Y. Choi, D. Su, P. Liua, R.R. Adzic, Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction. Energy Environ. Sci. 5(1), 5297–5304 (2012)CrossRefGoogle Scholar
  14. 14.
    K. Gong, W. Chen, K. Sasaki, D. Su, M.B. Vukmirovic, W. Zhou, E.L. Izzo, C. Perez-Acosta, P. Hirunsit, P.B. Balbuena, R.R. Adzic, Platinum-monolayer electrocatalysts: palladium interlayer on IrCo alloy core improves activity in oxygen-reduction reaction. J. Electroanal. Chem. 649(1-2), 232–237 (2010)CrossRefGoogle Scholar
  15. 15.
    T. Cochell, A. Manthiram, Pt@PdxCuy/C core–shell electrocatalysts for oxygen reduction reaction in fuel cells. Langmuir 28(2), 1579–1587 (2012)CrossRefPubMedGoogle Scholar
  16. 16.
    E. Flores-Rojas, J.G. Cabañas-Moreno, J.F. Pérez-Robles, O. Solorza-Feria, Mechanochemical synthesis of Co and Ni decorated with chemically deposited Pt as electrocatalysts for oxygen reduction reaction. Mater. Chem. Phys. 183, 101–109 (2016)CrossRefGoogle Scholar
  17. 17.
    E. Flores-Rojas, H. Cruz-Martínez, M.M. Tellez-Cruz, J.F. Pérez-Robles, M.A. Leyva-Ramírez, P. Calaminici, O. Solorza-Feria, Electrocatalysis of oxygen reduction on CoNi-decorated-Pt nanoparticles: a theoretical and experimental study. Int. J. Hydrog. Energy 41(48), 23301–23311 (2016)CrossRefGoogle Scholar
  18. 18.
    J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts. Nat. Chem. 1(1), 37–46 (2009)CrossRefPubMedGoogle Scholar
  19. 19.
    J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004)CrossRefGoogle Scholar
  20. 20.
    V. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Nørskov, Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. 118(18), 2963–2967 (2006)CrossRefGoogle Scholar
  21. 21.
    J. Greeley, I.E.L. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J.K. Nørskov, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1(7), 552–556 (2009)CrossRefPubMedGoogle Scholar
  22. 22.
    H.C. Tsai, T.H. Yu, Y. Sha, B.V. Merinov, P.W. Wu, S.Y. Chen, W.A. Goddard III, Density functional theory study of Pt3M alloy surface segregation with adsorbed O/OH and Pt3Os as catalysts for oxygen reduction reaction. J. Phys. Chem. C 118(46), 26703–26712 (2014)CrossRefGoogle Scholar
  23. 23.
    R. Callejas-Tovar, P.B. Balbuena, Effect of subsurface vacancies on oxygen reduction reaction activity of Pt-based alloys. J. Phys. Chem. C 116(27), 14414–14422 (2012)CrossRefGoogle Scholar
  24. 24.
    B.B. Xiao, X.B. Jiang, Q. Jiang, Density functional theory study of oxygen reduction reaction on Pt/Pd3Al(111) alloy electrocatalyst. Phys. Chem. Chem. Phys. 18(21), 14234–14243 (2016)CrossRefPubMedGoogle Scholar
  25. 25.
    P.C. Jennings, H.A. Aleksandrov, K.M. Neyman, R.L. Johnston, A DFT study of oxygen dissociation on platinum based nanoparticles. Nanoscale 6(2), 1153–1165 (2014)CrossRefPubMedGoogle Scholar
  26. 26.
    S. Praserthdam P.B. Balbuena, Effects of oxygen coverage, catalyst size, and core composition on Pt-alloy core-shell nanoparticles for oxygen reduction reaction. Catal. Sci. Technol. 6(13), 5168–5177 (2016) CrossRefGoogle Scholar
  27. 27.
    L. Zhang, G. Henkelman, Computational Design of Alloy-Core@Shell Metal Nanoparticle Catalysts. ACS Catal. 5(2), 655-660 (2015)CrossRefGoogle Scholar
  28. 28.
    R.M. Anderson, D.F. Yancey, L. Zhang, S.T. Chill, G. Henkelman, R.M. Crooks, A theoretical and experimental approach for correlating nanoparticle structure and electrocatalytic activity. Acc. Chem. Res. 48(5), 1351–1357 (2015)CrossRefPubMedGoogle Scholar
  29. 29.
    G. Ramos-Sanchez, S. Praserthdam, F. Godinez-Salomon, C. Barker, M. Moerbe, H.A. Calderon, L.A. Lartundo, M.A. Leyva, O. Solorza-Feria, P.B. Balbuena, Challenges of modelling real nanoparticles: Ni@Pt electrocatalysts for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 17(42), 28286–28297 (2015)CrossRefPubMedGoogle Scholar
  30. 30.
    H.C. Tsai, Y.C. Hsieh, T.H. Yu, Y.J. Lee, Y.H. Wu, B.V. Merinov, P.W. Wu, S.Y. Chen, R.R. Adzic, W.A. Goddard III, DFT study of oxygen reduction reaction on Os/Pt core–shell catalysts validated by electrochemical experiment. ACS Catal. 5(3), 1568–1580 (2015)CrossRefGoogle Scholar
  31. 31.
    L. Zhang, R. Iyyamperumal, D.F, Yancey, R.M. Crooks, G. Henkelman, Design of Pt-Shell Nanoparticles with Alloy Cores for the Oxygen Reduction Reaction. ACS nano 7(10), 9168–9172 (2013) CrossRefPubMedGoogle Scholar
  32. 32.
    S.P. Lin, K.W. Wang, C.W. Liu, H.S. Chen, J.H. Wang, Trends of oxygen reduction reaction on platinum alloys: a computational and experimental study. J. Phys. Chem. C 119(27), 15224–15231 (2015)CrossRefGoogle Scholar
  33. 33.
    G. Geudtner, P. Calaminici, J. Carmona-Espíndola, J.M. del Campo, V.D. Domínguez-Soria, R.F. Moreno, G.U. Gamboa, A. Goursot, A.M. Köster, J.U. Reveles, T. Mineva, J.M. Vásquez-Pérez, A. Vela, B. Zúñiga-Gutierrez, D.R. Salahub, deMon2k. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2(4), 548–555 (2012)Google Scholar
  34. 34.
    A.M. Koster, G. Geudtner, A. Alvarez-Ibarra, P. Calaminici, M.E. Casida, J. Carmona-Espindola, V.D. Dominguez, R. Flores-Moreno, G.U. Gamboa, A. Goursot, T. Heine, A. Ipatov, A. de la Lande, F. Janetzko, J.M. del Campo, D. Mejia-Rodriguez, J.U. Reveles, J. Vasquez-Perez, A. Vela, B. Zuniga-Gutierrez, D.R. Salahub, deMon2k, version, vol 4 (The deMon developers, Cinvestav, Mexico City, 2016)Google Scholar
  35. 35.
    V.I. Lebedev, A quadrature formula for the sphere of 59th algebraic order of accuracy. Russian Acad. Sci. Dokl. Math. 50(2), 283–286 (1995) Google Scholar
  36. 36.
    P.M.W. Gill, B.G. Johnson, J.A. Pople, A standard grid for density functional calculations. Chem. Phys. Lett. 209(5-6), 506–512 (1993)CrossRefGoogle Scholar
  37. 37.
    B.I. Dunlap J.W.D. Connolly, J.R. Sabin, On first‐row diatomic molecules and local density models. J. Chem. Phys. 71(12), 4993–4999 (1979) CrossRefGoogle Scholar
  38. 38.
    J.W. Mintmire, B.I. Dunlap, Fitting the Coulomb potential variationally in linear-combination-of-atomic-orbitals density-functional calculations. Phys. Rev. A 25(1), 88–95 (1982)CrossRefGoogle Scholar
  39. 39.
    Y. Zhang, W. Yang, Comment on “Generalized gradient approximation made simple”. Phys. Rev. Lett. 80(4), 890 (1998)CrossRefGoogle Scholar
  40. 40.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)CrossRefPubMedGoogle Scholar
  41. 41.
    K.L. Schuchardt, B.T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T.L. Windus, Basis set exchange: a community database for computational sciences. J. Chem. Inf. Model. 47(3), 1045–1052 (2007)CrossRefPubMedGoogle Scholar
  42. 42.
    P. Calaminici, F. Janetzko, A.M. Köster, R. Mejia-Olvera, B. Zuniga-Gutierrez, Density functional theory optimized basis sets for gradient corrected functionals: 3d transition metal systems. J. Chem. Phys. 126(4), 44108 (2007)CrossRefGoogle Scholar
  43. 43.
    A.M. Köster, J.U. Reveles, J.M. del Campo, Calculation of exchange-correlation potentials with auxiliary function densities. J. Chem. Phys. 121(8), 3417–3424 (2004)CrossRefPubMedGoogle Scholar
  44. 44.
    J.U. Reveles, A.M. Köster, Geometry optimization in density functional methods. J. Comput. Chem. 25(9), 1109–1116 (2004)CrossRefPubMedGoogle Scholar
  45. 45.
    A. Ezeta, E.M. Arce, O, Solorza, R.G. González, H. Dorantes, Effect of the leaching of Ru-Se-Fe and Ru-Mo-Fe obtained by mechanical alloying on electrocatalytical behavior for the oxygen reduction reaction. J. Alloys Compd. 483(1-2), 429–431 (2009)CrossRefGoogle Scholar
  46. 46.
    P. Sotelo-Mazón, R.G. González-Huerta, J.G. Cabañas-Moreno, O. Solorza-Feria, Mechanically milled RuxFey electrocatalyst for oxygen reduction in acid media. Int. J. Electrochem. 2(7), 523–533 (2007) Google Scholar
  47. 47.
    M.A. García-Contreras, S.M. Fernández-Valverde, J.R. Vargas-García, M.A. Cortés-Jácome, J.A. Toledo-Antonio, C. Angeles-Chavez, Pt, PtCo and PtNi electrocatalysts prepared by mechanical alloying for the oxygen reduction reaction in 0.5M H2SO4. Int. J. Hydrog. Energy 33(22), 6672–6680 (2008)CrossRefGoogle Scholar
  48. 48.
    C.A. Cortes-Escobedo, R.G. Gonzalez-Huerta, A.M. Bolarín-Miró, F.S. de Jesús, Q. Zhu, S.E. Canton, K. Suarez-Alcantara, M. Tufiño-Velazquez, Mechanically activated Pt–Ni and Pt–Co alloys as electrocatalysts in the oxygen reduction reaction. Int. J. Hydrog. Energy 39(29), 16722–16730 (2014)CrossRefGoogle Scholar
  49. 49.
    Q. Jia, W. Liang, M.K. Bates, P. Mani, W. Lee, S. Mukerjee, Activity descriptor identification for oxygen reduction on platinum-based bimetallic nanoparticles: in situ observation of the linear composition–strain–activity relationship. ACS Nano 9(1), 387–400 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    I.E.L. Stephens, A.S. Bondarenko, U. Gronbjerg, J. Rossmeisl, I. Chorkendorff, Understanding the electrocatalysis of oxygen reduction on platinum and its alloys.  Environ. Sci. 5(5), 6744–6762 (2012)Google Scholar
  51. 51.
    A.J. Medford, A. Vojvodic, J.S. Hummelshøj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard, A. Nilsson, J.K. Nørskov, From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Cat. 328, 36–42 (2015)CrossRefGoogle Scholar
  52. 52.
    C. di Paola, F. Baletto, Oxygen adsorption on small PtNi nanoalloys. Phys. Chem. Chem. Phys. 13(17), 7701–7707 (2011)CrossRefPubMedGoogle Scholar
  53. 53.
    J. Shin, J.H. Choi, P.R. Cha, S.K. Kim, I. Kim, S.C. Lee, D.S. Jeong, Catalytic activity for oxygen reduction reaction on platinum-based core-shell nanoparticles: all-electron density functional theory. Nanoscale 7(38), 15830–15839 (2015)CrossRefPubMedGoogle Scholar
  54. 54.
    J. Zhang, H. Yang, J. Fang, S. Zou, Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 10(2), 638–644 (2010)CrossRefPubMedGoogle Scholar
  55. 55.
    C. Cui, L. Gan, M. Heggen, S. Rudi, P. Strasser, Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12(8), 765–771 (2013)CrossRefPubMedGoogle Scholar
  56. 56.
    W.T. Hong, M. Risch, K.A. Stoerzinger, A. Grimaud, J. Suntivich, Y. Shao-Horn, Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8(5), 1404–1427 (2015)CrossRefGoogle Scholar
  57. 57.
    F. Cheng, J. Chen, Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41(6), 2172-2192 (2012) CrossRefPubMedGoogle Scholar
  58. 58.
    R.R. Adzic, Platinum monolayer electrocatalysts: tunable activity, stability, and self-healing properties. Electrocatalysis 3(3–4), 163–169 (2012)CrossRefGoogle Scholar
  59. 59.
    K.J.J. Mayrhofer, V. Juhart, K. Hartl, M. Hanzlik, M. Arenz, Adsorbate‐Induced Surface Segregation for Core–Shell Nanocatalysts. Angew. Chem. Int. 48(19), 3529-3531 (2009)CrossRefGoogle Scholar
  60. 60.
    Y. Nie, L. Li, W. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44(8), 2168–2201 (2015)CrossRefPubMedGoogle Scholar
  61. 61.
    Y.J. Wang, N. Zhao, B. Fang, H. Li, X.T. Bi, H. Wang, Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 115(9), 3433–3467 (2015)CrossRefPubMedGoogle Scholar
  62. 62.
    T. Vidakovic, M. Christov, K. Sundmacher, The use of CO stripping for in situ fuel cell catalyst characterization. Electrochim. Acta 52(18), 5606–5613 (2007)CrossRefGoogle Scholar
  63. 63.
    D. Chen, Q. Tao, L. Wen Liao, S. Xiong Liu, Y. Xia Chen, Determining the active surface area for various platinum electrodes. S.Ye, Electrocatal. 2(3), 207–219 (2011)CrossRefGoogle Scholar
  64. 64.
    K.J.J. Maryhofer, M. Arenz, B.B. Blizanac, V. Stamenkovic, P.N. Ross, N.M. Markovic, CO surface electrochemistry on Pt-nanoparticles: a selective review. Electrochim. Acta 50(25–26), 5144–5154 (2005)CrossRefGoogle Scholar
  65. 65.
    F. Maillard, E.R. Svinova, U. Stimming, CO monolayer oxidation on Pt nanoparticles: further insights into the particle size effects. J. Electroanal. Chem. 599(2), 221–232 (2007)CrossRefGoogle Scholar
  66. 66.
    F. Maillard, S. Schreier, M. Hanzlik, E.R. Savinova, S. Weinkaul, U. Stimming, Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys. Chem. Chem. Phys. 7(2), 385–393 (2005)CrossRefGoogle Scholar
  67. 67.
    P. Urchaga, S. Baranton, C. Coutanceau, G. Jerkiewicz, Electro-oxidation of COchemon Pt nanosurfaces: solution of the peak multiplicity puzzle. Langmuir 28(7), 3658–3663 (2012)CrossRefPubMedGoogle Scholar
  68. 68.
    Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, S.S. Kocha, Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 82(15), 6321–6328 (2010)CrossRefPubMedGoogle Scholar
  69. 69.
    S. Beyhan, N.E. Şahin, S. Pronier, J.M. Léger, F. Kadırgan, Comparison of oxygen reduction reaction on Pt/C, Pt-Sn/C, Pt-Ni/C, and Pt-Sn-Ni/C catalysts prepared by Bönnemann method: a rotating ring disk electrode study. Electrochim. Acta 151, 565–573 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Programa de Doctorado en Nanociencias y Nanotecnología, CINVESTAVCiudad de MéxicoMexico
  2. 2.Departamento de Física, CINVESTAVCiudad de MéxicoMexico
  3. 3.Departamento de Química, CINVESTAVCiudad de MéxicoMexico

Personalised recommendations