Electrocatalytic Behavior of Pd and Pt Nanoislands Deposited onto 4,4′-Dithiodipyridine SAMs on Au(111)

  • Heiko Müller
  • Martin Metzler
  • Natalie Barth
  • Bert Conings
  • Hans-Gerd Boyen
  • Timo Jacob
  • Ludwig A. Kibler
Original Paper
  • 16 Downloads

Abstract

Using different electrochemical techniques as well as in situ scanning tunneling microscopy (STM) and ultraviolet photoelectron spectroscopy (UPS), we investigated the electrocatalytic oxidation of carbon monoxide and methanol on palladium and on platinum nanoislands, which were deposited onto 4,4′-dithiodipyridine self-assembled monolayers (SAMs) on Au(111) single crystal electrodes. Electrochemical and morphological measurements performed on these monoatomic high metal deposits on top of the SAM show rather different island growth along with variations in metal coverage and particle size. UPS He-II valence band spectra of all Pt deposits reveal no intensity at the Fermi energy, so that the resulting nanoislands can be considered as non-metallic. While the electronic and structural properties do not affect carbon monoxide adsorption, the metal coverage has a tremendous impact on the catalytic activity regarding CO oxidation as well as methanol oxidation.

Graphical abstract

Keywords

Electrocatalysis Self-assembled monolayers Metallization CO oxidation Methanol oxidation 

Notes

Acknowledgements

The authors thank Claus Müller for his technical STM support.

Supplementary material

12678_2018_467_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1268 kb)

References

  1. 1.
    R.G. Nuzzo, D.L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105(13), 4481–4483 (1983)CrossRefGoogle Scholar
  2. 2.
    L.H. Dubois, R.G. Nuzzo, Synthesis, structure, and properties of model organic surfaces. Annu. Rev. Phys. Chem. 43(1), 437–463 (1992)CrossRefGoogle Scholar
  3. 3.
    A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 96(4), 1533–1554 (1996)CrossRefGoogle Scholar
  4. 4.
    J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105(4), 1103–1170 (2005)CrossRefGoogle Scholar
  5. 5.
    C. Vericat, M.E. Vela, G. Benitez, P. Carro, R.C. Salvarezza, Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem. Soc. Rev. 39(5), 1805–1834 (2010)Google Scholar
  6. 6.
    O. Azzaroni, M. Cipollone, M.E. Vela, R.C. Salvarezza, Protective properties of dodecanethiol layers on copper surfaces: the effect of chloride anions in aqueous environments. Langmuir 17(5), 1483–1487 (2001)CrossRefGoogle Scholar
  7. 7.
    G. Brunoro, A. Frignani, A. Colledan, C. Chiavari, Organic films for protection of copper and bronze against acid rain corrosion. Corros. Sci. 45(10), 2219–2231 (2003)CrossRefGoogle Scholar
  8. 8.
    R. Levicky, T.M. Herne, M.J. Tarlov, S.K. Satija, Using self-assembly to control the structure of dna monolayers on gold: a neutron reflectivity study. J. Am. Chem. Soc. 120(38), 9787–9792 (1998)CrossRefGoogle Scholar
  9. 9.
    B. Bonanni, A.R. Bizzarri, S. Cannistraro, Optimized biorecognition of cytochromec551 and azurin immobilized on thiol-terminated monolayers assembled on Au(111) substrates. J. Phys. Chem. B 110(30), 14574–14580 (2006)CrossRefGoogle Scholar
  10. 10.
    J.M. Tour, Molecular electronics. Synthesis and testing of components. Acc. Chem. Res. 33(11), 791–804 (2000)CrossRefGoogle Scholar
  11. 11.
    T. Sugawara, M.M. Matsushita, Spintronics in organic π-electronic systems. J. Mater. Chem. 19(12), 1738–1753 (2009)CrossRefGoogle Scholar
  12. 12.
    J.M. Seminario, Approaching reality. Nat. Mater. 4(2), 111–113 (2005)CrossRefGoogle Scholar
  13. 13.
    G. Cuniberti, G. Fagas, and K. Richter, in Introd. Mol. Electron. (Lecture Note Physics), edited by G. Cuniberti, K. Richter, G. Fagas (Springer Berlin, Berlin, 2005), pp. 1–10Google Scholar
  14. 14.
    J.M. Seminario, J.M. Tour, Ab initio methods for the study of molecular systems for nanometer technology: toward the first-principles design of molecular computers. Ann. N. Y. Acad. Sci. 852(1 MOLECULAR ELE), 68–94 (1998)CrossRefGoogle Scholar
  15. 15.
    H. Haick, D. Cahen, Making contact: connecting molecules electrically to the macroscopic world. Prog. Surf. Sci. 83(4), 217–261 (2008)CrossRefGoogle Scholar
  16. 16.
    H. Kind, A.M. Bittner, O. Cavalleri, K. Kern, T. Greber, Electroless deposition of metal nanoislands on aminothiolate-functionalized Au(111) electrodes. J. Phys. Chem. B 102(39), 7582–7589 (1998)CrossRefGoogle Scholar
  17. 17.
    E.A. Speets, P. Te Riele, M.A.F. Van Den Boogaart, L.M. Doeswijk, B.J. Ravoo, G. Rijnders, J. Brugger, D.N. Reinhoudt, D.H.A. Blank, Formation of metal nano- and micropatterns on self-assembled monolayers by pulsed laser deposition through nanostencils and electroless deposition. Adv. Funct. Mater. 16(10), 1337–1342 (2006)CrossRefGoogle Scholar
  18. 18.
    M.I. Muglali, A. Bashir, A. Birkner, M. Rohwerder, Hydrogen as an optimum reducing agent for metallization of self-assembled monolayers. J. Mater. Chem. 22(29), 14337–14340 (2012)CrossRefGoogle Scholar
  19. 19.
    T. Baunach, V. Ivanovo, D.M. Kolb, H.-G. Boyen, P. Ziemann, M. Büttner, P. Oelhafen, A new approach to the electrochemical metallization of organic monolayers: palladium deposition onto a 4,4′-dithiodipyridine self-assembled monolayer. Adv. Mater. 16(22), 2024–2028 (2004)CrossRefGoogle Scholar
  20. 20.
    I. Thom, G. Hähner, M. Buck, Replicative generation of metal microstructures by template-directed electrometallization. Appl. Phys. Lett. 87(2), 024101 1–3 (2005)Google Scholar
  21. 21.
    T. Baunach, V. Ivanova, D.A. Scherson, D.M. Kolb, Self-assembled monolayers of 4-mercaptopyridine on Au(111): A potential-induced phase transition in sulfuric acid solutions. Langmuir 20(7), 2797–2802 (2004)CrossRefGoogle Scholar
  22. 22.
    W. Zhou, T. Baunach, V. Ivanova, D.M. Kolb, Structure and electrochemistry of 4,4‘-dithiodipyridine self-assembled monolayers in comparison with 4-mercaptopyridine self-assembled monolayers on Au(111). Langmuir 20(11), 4590–4595 (2004)CrossRefGoogle Scholar
  23. 23.
    M. Manolova, H.-G. Boyen, J. Kucera, A. Groß, A. Romanyuk, P. Oelhafen, V. Ivanova, D.M. Kolb, Chemical interactions at metal/molecule interfaces in molecular junctions—a pathway towards molecular recognition. Adv. Mater. 21(3), 320–324 (2009)CrossRefGoogle Scholar
  24. 24.
    F. Eberle, M. Kayser, D.M. Kolb, M. Saitner, H.-G. Boyen, M. Dolieslaeger, D. Mayer, A. Wirth, Metallization of organic surfaces: Pd on thiazole. Langmuir 26(7), 4738–4742 (2010)CrossRefGoogle Scholar
  25. 25.
    F. Eberle, M. Metzler, D.M. Kolb, M. Saitner, P. Wagner, H.-G. Boyen, Metallization of ultra-thin, non-thiol SAMS with flat-lying molecular units: Pd on 1, 4-dicyanobenzene. ChemPhysChem 11(13), 2951–2956 (2010)CrossRefGoogle Scholar
  26. 26.
    V. Ivanova, T. Baunach, D.M. Kolb, Metal deposition onto a thiol-covered gold surface: a new approach. Electrochim. Acta 50(21), 4283–4288 (2005)CrossRefGoogle Scholar
  27. 27.
    M. Manolova, V. Ivanova, D.M. Kolb, H.-G. Boyen, P. Ziemann, M. Büttner, A. Romanyuk, P. Oelhafen, Metal deposition onto thiol-covered gold: platinum on a 4-mercaptopyridine SAM. Surf. Sci. 590(2-3), 146–153 (2005)CrossRefGoogle Scholar
  28. 28.
    M. Manolova, M. Kayser, D.M. Kolb, H.-G. Boyen, P. Ziemann, D. Mayer, A. Wirth, Rhodium deposition onto a 4-mercaptopyridine SAM on Au(111). Electrochim. Acta 52(8), 2740–2745 (2007)CrossRefGoogle Scholar
  29. 29.
    F. Eberle, M. Saitner, H.-G. Boyen, J. Kucera, A. Gross, A. Romanyuk, P. Oelhafen, M. D’Olieslaeger, M. Manolova, D.M. Kolb, A molecular double decker: extending the limits of current metal-molecule hybrid structures. Angew. Chemie - Int. Ed 49(2), 341–345 (2010)Google Scholar
  30. 30.
    J.A. Keith, T. Jacob, Atomic-level elucidation of the initial stages of self-assembled monolayer metallization and nanoparticle formation. Chem. - A Eur. J. 16(41), 12381–12386 (2010)CrossRefGoogle Scholar
  31. 31.
    J. Kucera, A. Gross, Adsorption of 4-mercaptopyridine on Au(111): a periodic DFT study. Langmuir 24(24), 13985–13992 (2008)CrossRefGoogle Scholar
  32. 32.
    L.-J. Wan, Y. Hara, H. Noda, M. Osawa, Dimerization of sulfur headgroups in 4-mercaptopyridine self-assembled monolayers on Au(111) studied by scanning tunneling microscopy. J. Phys. Chem. B 102(31), 5943–5946 (1998)CrossRefGoogle Scholar
  33. 33.
    L.-J. Wan, H. Noda, Y. Hara, M. Osawa, Effect of solution pH on the structure of a 4-mercaptopyridine monolayer self-assembled on Au(111). J. Electroanal. Chem. 489(1-2), 68–75 (2000)CrossRefGoogle Scholar
  34. 34.
    T. Sawaguchi, F. Mizutani, I. Taniguchi, Direct observation of 4-mercaptopyridine and bis(4-pyridyl) disulfide monolayers on Au(111) in perchloric acid solution using in situ scanning tunneling microscopy. Langmuir 14(13), 3565–3569 (1998)CrossRefGoogle Scholar
  35. 35.
    T. Sawaguchi, F. Mizutani, S. Yoshimoto, I. Taniguchi, Voltammetric and in situ STM studies on self-assembled monolayers of 4-mercaptopyridine, 2-mercaptopyridine and thiophenol on Au(111) electrodes. Electrochim. Acta 45(18), 2861–2867 (2000)CrossRefGoogle Scholar
  36. 36.
    H.-G. Boyen, P. Ziemann, U. Wiedwald, V. Ivanova, D.M. Kolb, S. Sakong, A. Gross, A. Romanyuk, M. Büttner, P. Oelhafen, Local density of states effects at the metal-molecule interfaces in a molecular device. Nat. Mater. 5(5), 394–399 (2006)CrossRefGoogle Scholar
  37. 37.
    A. Chen, J. Lipkowski, electrochemical and spectroscopic studies of hydroxide adsorption at the Au(111) electrode. J. Phys. Chem. B 103(4), 682–691 (1999)CrossRefGoogle Scholar
  38. 38.
    P. Rodriguez, J.M. Feliu, M.T.M. Koper, Unusual adsorption state of carbon monoxide on single-crystalline gold electrodes in alkaline media. Electrochem. Commun. 11(6), 1105–1108 (2009)CrossRefGoogle Scholar
  39. 39.
    B.B. Blizanac, M. Arenz, P.N. Ross, N.M. Marković, Surface electrochemistry of CO on reconstructed gold single crystal surfaces studied by infrared reflection absorption spectroscopy and rotating disk electrode. J. Am. Chem. Soc. 126(32), 10130–10141 (2004)CrossRefGoogle Scholar
  40. 40.
    B.N. Zope, D.D. Hibbitts, M. Neurock, R.J. Davis, Reactivity of the gold/water interface during selective oxidation catalysis. Science 330(6000), 74–78 (2010)CrossRefGoogle Scholar
  41. 41.
    Y. Kwon, S.C.S. Lai, P. Rodriguez, M.T.M. Koper, Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis? J. Am. Chem. Soc. 133(18), 6914–6917 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Heiko Müller
    • 1
  • Martin Metzler
    • 1
  • Natalie Barth
    • 1
  • Bert Conings
    • 2
  • Hans-Gerd Boyen
    • 2
  • Timo Jacob
    • 1
  • Ludwig A. Kibler
    • 1
  1. 1.Institut für ElektrochemieUniversität UlmUlmGermany
  2. 2.Institute for Materials Research (IMO-IMOMEC)Hasselt UniversityDiepenbeekBelgium

Personalised recommendations