, Volume 9, Issue 5, pp 582–592 | Cite as

Pt-Ru-NiTiO3 Nanoparticles Dispersed on Vulcan as High Performance Electrocatalysts for the Methanol Oxidation Reaction (MOR)

  • Velumani Thiagarajan
  • Palaniswamy Karthikeyan
  • Ramasamy Manoharan
  • Srinivasan Sampath
  • A. Hernández-Ramírez
  • M.E. Sánchez-Castro
  • I.L. Alonso-Lemus
  • F.J. Rodríguez-Varela
Original Research


We propose a high performance electrocatalyst based on Pt-Ru-NiTiO3 nanoparticles supported on Vulcan carbon (Pt-Ru-NiTiO3/C) for the methanol oxidation reaction (MOR) in acid medium. The electrocatalyst is prepared from a two-step procedure using a wet chemical method. The morphological studies from TEM indicate that Pt-Ru-NiTiO3 nanoparticles are uniformly distributed on Vulcan carbon. The XRD shows the fcc structure of Pt nanomaterials, while the chemical composition examined using XPS indicates the presence of large fractions of Pt0 and Ru0 species (i.e., metallic state), OH and O2− species are also formed on the surface of the catalyst. The Pt-Ru-NiTiO3/C electrocatalyst exhibits a higher catalytic activity compared to a PtRu/C alloy. Pt-NiTiO3/C is also more active than the alloy. Therefore, on one side, the addition of Ru enhances the MOR through the formation of oxygenated adsorbed species on Ru, which thereby promotes the oxidation of CO to CO2 at more negative potentials (i.e., the bifunctional mechanism). On the other hand, the superior electrocatalytic performance of Pt-Ru-NiTiO3/C is attributed also to the synergistic effects of NiTiO3, which promotes the reaction increasing the current density and shifting the onset potential to even more negative values, suggesting that it also participates in the bifunctional mechanism along with Ru. From the results shown here, Pt-Ru-NiTiO3/C can be a promising anode nanomaterial for direct methanol fuel cells (DMFCs).

Graphical Abstract


Pt-Ru alloys XPS characterization Methanol oxidation reaction Electrocatalysts Direct methanol fuel cells 



We thank Prof. N. Munichandraiah and Prof. G. Mohan Rao of the Indian Institute of Science, Bengaluru, for their help rendered in the XPS analysis.

Funding Information

We gratefully acknowledge DST (Nano Mission-SR/NM/NS-1016/2010) and DST-CONACYT (Indo-Mexican Bilateral programme-INT/MEXICO/P14/2012 and grant 252079) for the financial support. This work was also funded through the Project 241526 from CONACYT.


  1. 1.
    M. Asif, T. Muneer, Energy supply, its demand and security issues for developed and emerging economies. Renew. Sust. Energ. Rev. 11, 1388–1413 (2007)CrossRefGoogle Scholar
  2. 2.
    U.S. Energy Information Administration, International energy outlook (Report Number: DOE/EIA-0484) (2016) Retrieved from Accessed 30 June 2016
  3. 3.
    E.H. Yu, U. Krewer, K. Scott, Principles and materials aspects of direct alkaline alcohol fuel cells. Energies 3, 1499–1528 (2010)CrossRefGoogle Scholar
  4. 4.
    T. Wang, C. Lin, F. Ye, Y. Fang, J. Li, X. Wang, MEA with double-layered catalyst cathode to mitigate methanol crossover in DMFC. Electrochem. Commun. 10, 1261–1263 (2008)CrossRefGoogle Scholar
  5. 5.
    V. Neburchilov, J. Martin, H. Wang, J. Zhang, A review of polymer electrolyte membranes for direct methanol fuel cells. J. Power Sources 169, 221–238 (2007)CrossRefGoogle Scholar
  6. 6.
    M.G. Hosseini, M. Abdolmaleki, S. Ashrafpoor, Methanol electro-oxidation on a porous nanostructured Ni/Pd-Ni electrode in alkaline media. Chinese J. Catal. 34, 1712–1719 (2013)CrossRefGoogle Scholar
  7. 7.
    G.S. Chai, S.B. Yoon, J.H. Kim, J.S. Yu, Spherical carbon capsules with hollow macroporous core and mesoporous shell structures as a highly efficient catalyst support in the direct methanol fuel cell, Chem. Commun. 23, 2766–2767 (2004).
  8. 8.
    H. Songa, X. Qiub, X. Lib, F. Lia, W. Zhub, L. Chenb, TiO2 nanotubes promoting Pt/C catalysts for ethanol electro-oxidation in acidic media. J. Power Sources 170, 50–54 (2007)CrossRefGoogle Scholar
  9. 9.
    E. Antolini, Platinum Alloys as Anode Catalysts for Direct Methanol Fuel Cells. In Electrocatalysis of Direct Methanol Fuel Cells: From Fundamentals to Applications (Wiley-VCH, Weinheim, 2009), 227–255Google Scholar
  10. 10.
    S.L. Gojkovic, T.R. Vidakovic, D.R. Durovic, Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst. Electrochim. Acta 48, 3607–3614 (2003)CrossRefGoogle Scholar
  11. 11.
    T. Frelink, W. Visscher, J.A.R. van Veen, On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surf. Sci. 335, 353–360 (1995)CrossRefGoogle Scholar
  12. 12.
    T. Iwasita, Electrocatalysis of methanol oxidation. Electrochim. Acta 47, 3663–3674 (2002)CrossRefGoogle Scholar
  13. 13.
    J.B. Goodenough, R. Manoharan, A.K. Shukla, K.V. Ramesh, Intraalloy electron transfer and catalyst performance: a spectroscopic and electrochemical study. Chem. Mater. 1, 391–398 (1989)CrossRefGoogle Scholar
  14. 14.
    J.B. Goodenough, A. Hamnett, B.J. Kennedy, R. Manoharan, S.A. Weeks, Methanol oxidation on unsupported and carbon supported Pt + Ru anodes. J. Electroanal. Chem. Interfacial Electrochem. 240, 133–145 (1988)CrossRefGoogle Scholar
  15. 15.
    D. González-Quijano, W.J. Pech-Rodriguez, J.A. González-Quijano, J.I. Escalante-Garcia, G. Vargas-Gutiérrez, I. Alonso-Lemus, F.J. Rodriguez-Varela, Electrocatalysts for ethanol and ethylene glycol oxidation reactions. Part II: effects of the polyol synthesis conditions on the characteristics and catalytic activity of Pt–Ru/C anodes. Int. J. Hydrog. Energy 40, 17291–17299 (2015)CrossRefGoogle Scholar
  16. 16.
    W.J. Pech-Rodríguez, D. González-Quijano, G. Vargas-Gutiérrez, C. Morais, T.W. Napporn, F.J. Rodríguez-Varela, Electrochemical and in situ FTIR study of the ethanol oxidation reaction on PtMo/C nanomaterials in alkaline media. Appl. Catal. B Environ. 203, 654–662 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Watanabe, S. Motoo, Electrocatalysis by ad-atoms: part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J. Electroanal. Chem. Interfacial Electrochem. 60, 267–273 (1975)CrossRefGoogle Scholar
  18. 18.
    H.A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns, Electro-oxidation of small organic molecules on well-characterized PtRu alloys. Electrochim. Acta 39, 1825–1832 (1994)CrossRefGoogle Scholar
  19. 19.
    P.J. Kulesza, L.R. Faukner, Electro deposition and characterization of three-dimensional tungsten(VI, V)-oxide films containing spherical Pt microparticles. J. Electrochem. Soc. 136, 707–713 (1989)CrossRefGoogle Scholar
  20. 20.
    P.J. Kulesza, L.R. Faukner, Electrocatalytic properties of bifunctional Pt/W(VI,V) oxide microstructures electrodeposited on carbon substrates. J. Electroanal. Chem. 259, 81–98 (1989)CrossRefGoogle Scholar
  21. 21.
    K.S. Lee, I.S. Park, Y.H. Cho, D.S. Jung, N. Jung, H.Y. Park, Y.E. Sung, Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells. J. Catal. 258, 143–152 (2008)CrossRefGoogle Scholar
  22. 22.
    H.L. Pang, X.H. Zhang, X.X. Zhong, B. Liu, X.G. Wei, Y.F. Kuang, J.H. Chen, Preparation of Ru-doped SnO2-supported Pt catalysts and their electrocatalytic properties for methanol oxidation. J. Colloid Interface Sci. 319, 193–198 (2008)CrossRefPubMedGoogle Scholar
  23. 23.
    M. Hepel, I. Kumarihamy, C.J. Zhong, Nanoporous TiO2-supported bimetallic catalysts for methanol oxidation in acidic media. Electrochem. Commun. 8, 1439–1444 (2006)CrossRefGoogle Scholar
  24. 24.
    X. Guo, D.J. Guo, X.P. Qiu, L.Q. Chen, W.T. Zhu, Excellent dispersion and electrocatalytic properties of Pt nanoparticles supported on novel porous anatase TiO2 nanorods. J. Power Sources 194, 281–285 (2009)CrossRefGoogle Scholar
  25. 25.
    K. Kordesch, G. Simader, Fuel cells and their applications (Wiley-VCH, Weinheim, 1996)CrossRefGoogle Scholar
  26. 26.
    T.S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, M.A. El-Sayed, Shape-controlled synthesis of colloidal platinum nanoparticles. Science New Series 272, 1924–1926 (1996)Google Scholar
  27. 27.
    H. Wakayama, N. Setoyama, Y. Fukushima, Size-controlled synthesis and catalytic performance of Pt nanoparticles in micro and mesoporous silica prepared using supercritical solvents. Adv. Mater. 15, 742–745 (2003)CrossRefGoogle Scholar
  28. 28.
    H.P. Liang, H.M. Zhang, J.S. Hu, Y.G. Guo, L.J. Wan, C.L. Bai, Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. Angew. Chem. 116, 1566–1569 (2004)CrossRefGoogle Scholar
  29. 29.
    G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393, 346–349 (1998)CrossRefGoogle Scholar
  30. 30.
    J.W. Long, R.M. Stroud, K.E. Swider-Lyons, D.R. Rolison, How to make electrocatalysts more active for direct methanol oxidation—avoid PtRu bimetallic alloys! J. Phys. Chem. B 104, 9772–9776 (2000)CrossRefGoogle Scholar
  31. 31.
    T. Saida, W. Sugimoto, Y. Takasu, Enhanced activity and stability of Pt/C fuel cell anodes by the modification with ruthenium-oxide nanosheets. Electrochim. Acta 55, 857–864 (2010)CrossRefGoogle Scholar
  32. 32.
    J. Tian, G. Sun, L. Jiang, S. Yan, Q. Mao, Q. Xin, Highly stable PtRuTiOx/C anode electrocatalyst for direct methanol fuel cells. Electrochem. Commun. 9, 563–568 (2007)CrossRefGoogle Scholar
  33. 33.
    Z.X. Liang, T.S. Zhao, J.B. Xu, Stabilization of the platinum–ruthenium electrocatalyst against the dissolution of ruthenium with the incorporation of gold. J. Power Sources 185, 166–170 (2008)CrossRefGoogle Scholar
  34. 34.
    J. Chang, L. Feng, C. Liu, W. Xing, Ni2P makes application of the PtRu catalyst much stronger in direct methanol fuel cells. ChemSusChem 8, 3340–3347 (2015)CrossRefPubMedGoogle Scholar
  35. 35.
    D.K. Kang, C.S. Noh, N.H. Kim, S.-H. Choc, J.M. Sohn, T.J. Kim, Y.-K. Park, Effect of transition metals (Ni, Sn and Mo) in Pt5Ru4M alloy ternary electrocatalyst on methanol electro-oxidation. J Industrial and Engineering Chem. 16, 385–389 (2010)CrossRefGoogle Scholar
  36. 36.
    R. Manoharan, J.B. Goodenough, Methanol oxidation in acid on ordered NiTi. J. Mater. Chem. 2, 875–887 (1992)CrossRefGoogle Scholar
  37. 37.
    Y.J. Lin, Y.H. Changa, G.J. Chen, Y.S. Chang, Y.C. Chang, Effects of Ag-doped NiTiO3 on photoreduction of methylene blue under UV and visible light irradiation. J. Alloys Compd. 479, 785–790 (2009)CrossRefGoogle Scholar
  38. 38.
    M. Lerch, H. Boysen, R. Nerde, F. Frey, W. Laqua, Neutron scattering investigation of the high temperature phase transition in NiTiO3. J. Phys. Chem. Solids 53, 1153–1156 (1992)CrossRefGoogle Scholar
  39. 39.
    A. Hernández-Ramírez, M.E. Sánchez-Castro, I. Alonso-Lemus, K.K. Aruna, P. Karthikeyan, R. Manoharan, F.J. Rodríguez-Varela, Evaluation of the nickel titanate-modified Pt nanostructured catalyst for the ORR in alkaline media. J. Electrochem. Soc. 163, 16–24 (2016)CrossRefGoogle Scholar
  40. 40.
    V. Thiagarajan, R. Manoharan, P. Karthikeyan, E. Nikhila, A. Hernández-Ramírez, F.J. Rodríguez-Varela, Pt nanoparticles supported on NiTiO3/C as electrocatalyst towards high performance Methanol Oxidation Reaction. Int. J. Hydrog. Energy 42, 9795–9805 (2017)CrossRefGoogle Scholar
  41. 41.
    R. Vijayalakshmi, V. Rajendran, Effect of reaction temperature on size and optical properties of NiTiO3 nanoparticles. E-J. Chem. 9, 282–288 (2012)CrossRefGoogle Scholar
  42. 42.
    E.V. Spinace, A.O. Neto, T.R.R. Vasconcellos, M. Linardi, Electro-oxidation of ethanol using PtRu/C electrocatalysts prepared by alcohol-reduction process. J. Power Sources 137, 17–23 (2004)CrossRefGoogle Scholar
  43. 43.
    E.V. Spinace, A.O. Neto, T.R.R. Vasconcelos, M. Linardi, Patent BR200304121-AGoogle Scholar
  44. 44.
    Z.B. Wang, G.P. Yin, Y.G. Lin, Synthesis and characterization of PtRuMo/C nanoparticle electrocatalyst for direct ethanol fuel cell. J. Power Sources 170, 242–250 (2007)CrossRefGoogle Scholar
  45. 45.
    T.J. Schmidt, H.A. Gasteiger, G.D. Stab, P.M. Urban, D.M. Kolb, R.J. Behm, Characterization of high surface-area electrocatalysts using a rotating disk electrode configuration. J. Electrochem. Soc. 145, 2354–2358 (1998)CrossRefGoogle Scholar
  46. 46.
    M. Ercelik, A. Ozden, E. Seker, C.O. Colpan, Characterization and performance evaluation of Pt-Ru/C-TiO2 anode electrocatalyst for DMFC applications. Int. J. Hydrog. Energy (2016).
  47. 47.
    L. Khotseng, A. Bangisa, R.M. Modibedi, V. Linkov, Electrochemical evaluation of Pt-based binary catalysts on various supports for the direct methanol fuel cell. Electrocatalysis 7, 1–12 (2016)CrossRefGoogle Scholar
  48. 48.
    Z. Wang, G. Chen, D. Xia, L. Zhang, Studies on the electrocatalytic properties of PtRu/C-TiO2 toward the oxidation of methanol. J. Alloys Compd. 450, 148–151 (2008)CrossRefGoogle Scholar
  49. 49.
    C.Z. He, H.R. Kunz, J.M. Fenton, Evaluation of platinum based catalysts for methanol electro-oxidation in phosphoric acid electrolyte. J. Electrochem. Soc. 144, 970–979 (1997)CrossRefGoogle Scholar
  50. 50.
    L. Giorgi, A. Pozio, C. Bracchini, R. Giorgi, S. Turtu, H2 and H2/CO oxidation mechanism on Pt/C, Ru/C and Pt-Ru/C electrocatalysts. J. Appl. Electrochem. 31, 325–334 (2001)CrossRefGoogle Scholar
  51. 51.
    Z. Liu, B. Guo, L. Hong, T.H. Lim, Microwave heated polyol synthesis of carbon-supported PtSn nanoparticles for methanol electrooxidation. Electrochem. Commun. 8, 83–90 (2006)CrossRefGoogle Scholar
  52. 52.
    J. Wang, J. Xi, Y. Bai, Y. Shen, J. Sun, L. Chen, W. Zhu, X. Qiu, Structural designing of Pt-CeO2/CNTs for methanol electro-oxidation. J. Power Sources 164, 555–560 (2007)CrossRefGoogle Scholar
  53. 53.
    P. Justin, G. Ranga Rao, Enhanced activity of methanol electro-oxidation on Pt-V2O5/C catalysts. Catal. Today 141, 138–143 (2009)CrossRefGoogle Scholar
  54. 54.
    D.N. Oko, J. Zhang, S. Garbarino, M. Chaker, D. Ma, A.C. Tavares, D. Guay, Formic acid electro-oxidation at PtAu alloyed nanoparticles synthesized by pulsed laser ablation in liquids. J. Power Sources 248, 273–282 (2014)CrossRefGoogle Scholar
  55. 55.
    T.S. Almeida, L.M. Palma, P.H. Leonello, C. Morais, K.B. Kokoh, A.R. De Andrade, An optimization study of PtSn/C catalysts applied to direct ethanol fuel cell: Effect of the preparation method on the electrocatalytic activity of the catalysts. J. Power Sources 215, 53–62 (2012)CrossRefGoogle Scholar
  56. 56.
    G.H. An, H.J. Ahn, W.K. Hong, Electrochemical properties for high surface area and improved electrical conductivity of platinum-embedded porous carbon nanofibers. J. Power Sources 274, 536–541 (2015)CrossRefGoogle Scholar
  57. 57.
    X. Du, S. Luo, H. Du, M. Tang, X. Huang, P.K. Shen, Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for methanol oxidation reaction. J. Mat. Chem. A 4, 1579–1585 (2016)CrossRefGoogle Scholar
  58. 58.
    H.L. An, G.H. An, H.J. Ahn, Octahedral Co3O4/carbon nanofiber composite-supported Pt catalysts for improved methanol electrooxidation. J. Alloys Compd. 645, 317–321 (2015)CrossRefGoogle Scholar
  59. 59.
    F. Liu, J.Y. Lee, W. Zhou, Multisegment of PtRu nanorods: electrocatalysts with adjustable bimetallic pair sites. Adv. Funct. Mater. 15, 1459–1464 (2005)CrossRefGoogle Scholar
  60. 60.
    N.Y. Hsu, C.C. Chien, K.T. Jeng, Characterization and enhancement of carbon nanotube-supported PtRu electrocatalyst for direct methanol fuel cell applications. Appl. Catal. B Environ. 84, 196–203 (2008)CrossRefGoogle Scholar
  61. 61.
    P. Justin, G. Ranga Rao, Methanol oxidation on MoO3 promoted Pt/C electrocatalyst. Int. J. Hydrog. Energy 36, 5875–5884 (2011)CrossRefGoogle Scholar
  62. 62.
    A.K. Shukla, A.S. Arico, K.M. El-Khatib, H. Kim, P.L. Antonucci, V. Antonucci, An X-ray photoelectron spectroscopic study on the effect of Ru and Sn additions to platinised carbons. Appl. Surf. Sci. 137, 20–29 (1999)CrossRefGoogle Scholar
  63. 63.
    C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Praire, 1994)Google Scholar
  64. 64.
    V.I. Nefedov, E.K. Zhumadilov, L. Baier, Zhurnal Neorganicheskoi Khimii 23, 2113 (1978)Google Scholar
  65. 65.
    M. Murata, K. Wakino, S. Ikeda, X-ray photoelectron spectroscopic study of perovskite titanates and related compounds: an example of the effect of polarization on chemical shifts. J. Electron Spectros. Relat. Phenom. 6, 459–464 (1975)CrossRefGoogle Scholar
  66. 66.
    N.M. Markovic, H.A. Gasteiger, P.N. Ross, Oxygen reduction on platinum low-index single-crystal surfaces in alkaline solution: rotating ring disk Pt(hkl) studies. J. Phys. Chem. 100, 6715–6721 (1996)CrossRefGoogle Scholar
  67. 67.
    R.E. Cid, J.L.G. de la Fuente, S. Rojas, J.L.G. Fierro, P. Ocon, Polypyrrole-modified-carbon-supported Ru-Pt nanoparticles as highly methanol-tolerant electrocatalysts for the oxygen-reduction reaction. ChemCatChem 5, 3680–3689 (2013)CrossRefGoogle Scholar
  68. 68.
    H.E. Szwarckopf, XPS photoemission in carbonaceous materials: a “defect” peak beside the graphitic asymmetric peak. Carbon 42, 1713–1721 (2004)CrossRefGoogle Scholar
  69. 69.
    A.A. Siller-Ceniceros, M.E. Sánchez-Castro, D. Morales-Acosta, J.R. Torres-Lubian, E.G. Martínez, F.J. Rodríguez-Varela, Innovative functionalization of Vulcan XC-72 with Ru organometallic complex: significant enhancement in catalytic activity of Pt/C electrocatalyst for the methanol oxidation reaction (MOR). Appl. Catal. B Environ. 209, 455–467 (2017)CrossRefGoogle Scholar
  70. 70.
    G. Selvarani, A.K. Sahu, N.A. Choudhury, P. Sridhar, S. Pitchumani, A.K. Shukla, A phenyl-sulfonic acid anchored carbon-supported platinum catalyst for polymer electrolyte fuel cell electrodes. Electrochim. Acta 52, 4871–4277 (2007)CrossRefGoogle Scholar
  71. 71.
    D.R.M. Godoi, J. Perez, H.M. Villullas, Effects of alloyed and oxide phases on methanol oxidation of Pt-Ru/C nanocatalysts of the same particle size. J. Phys. Chem. C 113, 8518–8525 (2009)CrossRefGoogle Scholar
  72. 72.
    D.J. Guo, X.P. Qiu, W.T. Zhu, L.Q. Chen, Synthesis of sulfated ZrO2/MWCNT composites as new supports of Pt catalysts for direct methanol fuel cell application. Appl. Catal. B Environ. 89, 597–601 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Velumani Thiagarajan
    • 1
  • Palaniswamy Karthikeyan
    • 1
  • Ramasamy Manoharan
    • 2
  • Srinivasan Sampath
    • 3
  • A. Hernández-Ramírez
    • 4
  • M.E. Sánchez-Castro
    • 4
    • 5
  • I.L. Alonso-Lemus
    • 6
  • F.J. Rodríguez-Varela
    • 4
    • 5
  1. 1.Department of Automobile EngineeringPSG College of TechnologyCoimbatoreIndia
  2. 2.TiruchirappalliIndia
  3. 3.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBengaluruIndia
  4. 4.Programa de Nanociencias y NanotecnologíaCinvestav Unidad SaltilloRamos ArizpeMexico
  5. 5.Grupo de Sustentabilidad de los Recursos Naturales y EnergíaCinvestav Unidad SaltilloRamos ArizpeMexico
  6. 6.CONACYT, Grupo de Sustentabilidad de los Recursos Naturales y EnergíaCinvestav Unidad SaltilloRamos ArizpeMexico

Personalised recommendations