Electrocatalysis

, Volume 9, Issue 3, pp 370–379 | Cite as

Chemisorbed Oxygen at Pt(111): a DFT Study of Structural and Electronic Surface Properties

Original Research

Abstract

Simulations based on density functional theory are used to study the electronic and electrostatic properties of a Pt(111) surface covered by a layer of chemisorbed atomic oxygen. The impact of the oxygen surface coverage and orientationally ordered interfacial water layers is explored. The oxygen adsorption energy decreases as a function of oxygen coverage due to the lateral adsorbate repulsion. The surficial dipole moment density induced by the layer of chemisorbed oxygen causes a positive shift of the work function. In simulations with interfacial water layers, ordering and orientation of water molecules strongly affect the work function. It is found that the surficial dipole moment density and charge density are roughly linearly dependent on the oxygen surface coverage. Moreover, we found that water layers exert only a small impact on the surface charging behavior of the surface.

Graphical Abstract

Plane-averaged line charge density at the Pt(111)–Oad surface in the presence of one monolayer of water.

Keywords

Pt electrocatalysis Surface charge density Work function change Dipole moment Electrostatic properties 

Notes

Acknowledgements

A. Malek and M. Eikerling gratefully acknowledge the financial support towards this project from the NSERC APC network CaRPE-FC. The DFT calculations were performed by the support provided by WestGrid (www.westgrid.ca) and Compute Canada (www.computecanada.ca).

References

  1. 1.
    H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal. B Environ. 56, 9–35 (2005)CrossRefGoogle Scholar
  2. 2.
    M. Eikerling, A. Kulikovsky, Polymer Electrolyte Fuel Cells: Physical Principles of Materials and Operation. (CRC Press, Boca Raton, 2014)Google Scholar
  3. 3.
    M. J. Eslamibidgoli, J. Huang, T. Kadyk, A. Malek, M. Eikerling, Nano Energy 29, 334–361 (2016)Google Scholar
  4. 4.
    O. T. Holton, J. W. Stevenson, Platin. Met. Rev. 57, 259–271 (2013)CrossRefGoogle Scholar
  5. 5.
    M. K. Debe, Nature 486, 43–51 (2012)CrossRefGoogle Scholar
  6. 6.
    M. Busch, N. B. Halck, U. I. Kramm, S. Siahrostami, P. Krtil,  J. Rossmeisl, Nano Energy 29, 126–135 (2016)CrossRefGoogle Scholar
  7. 7.
    J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 108, 17886–17892 (2004)CrossRefGoogle Scholar
  8. 8.
    V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, J. K. Norskov, Angew. Chem. Int. Ed. 45, 2897–2901 (2006)CrossRefGoogle Scholar
  9. 9.
    V. Tripkovic, E. Skulason, S. Siahrostami, J. K. Norskov, J. Rossmeisl, Electrochim. Acta 55, 7975–7981 (2010)CrossRefGoogle Scholar
  10. 10.
    U.S. Department of Energy Hydrogen and Fuel Cells Program, “Record 15015: Fuel Cell System Cost – 2015, doi:http://www.hydrogen.energy.gov/program_records.html, (2015)
  11. 11.
    N. Guerrero Moreno, M. Cisneros Molina, D. Gervasio, J. F. Pérez Robles, Renew. Sust. Energ. Rev. 52, 897–906 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Lee, M. Uchida, H. Yano, D. A. Tryk, H. Uchida, M. Watanabe, Electrochim. Acta 55, 8504–8512 (2010)CrossRefGoogle Scholar
  13. 13.
    E. Sadeghi, A. Putz, M. Eikerling, J. Electrochem. Soc. 160, F1159–F1169 (2013)CrossRefGoogle Scholar
  14. 14.
    R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. I. Kimijima, N. Iwashita, Chem. Rev. 107, 3904–3951 (2007)CrossRefGoogle Scholar
  15. 15.
    K. Yu, D. J. Groom, X. P. Wang, Z. W. Yang, M. Gummalla, S. C. Ball, D. J. Myers, P. J. Ferreira, Chem. Mater. 26, 5540–5548 (2014)CrossRefGoogle Scholar
  16. 16.
    S. G. Rinaldo, W. Lee, J. Stumper, M. Eikerling, Electrocatalysis, 5, 262–272 (2014)CrossRefGoogle Scholar
  17. 17.
    P. Urchaga, T. Kadyk, S. G. Rinaldo, A. O. Pistono, J. Hu, W. Lee, C. Richards, M. H. Eikerling, C. A. Rice, Electrochim. Acta 176, 1500–1510 (2015)CrossRefGoogle Scholar
  18. 18.
    I. E. Stephens, A. S. Bondarenko, F. J. Perez-Alonso, F. Calle-Vallejo, L. Bech, T. P. Johansson, A. K. Jepsen, R. Frydendal, B. P. Knudsen, J. Rossmeisl, I. Chorkendorff, J. Am. Chem. Soc. 133, 5485–5491 (2011)CrossRefGoogle Scholar
  19. 19.
    I. E. L. Stephens, A. S. Bondarenko, U. Gronbjerg, J. Rossmeisl, I. Chorkendorff, Energ. Environ. Sci. 5, 6744–6762 (2012)CrossRefGoogle Scholar
  20. 20.
    L. Y. Wang, A. Roudgar, M. Eikerling, J. Phys. Chem. C 113, 17989–17996 (2009)CrossRefGoogle Scholar
  21. 21.
    V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. F. Wang, P. N. Ross, N. M. Markovic, Nat. Mater. 6, 241–247 (2007)CrossRefGoogle Scholar
  22. 22.
    A. A. Topalov, S. Cherevko, A. R. Zeradjanin, J. C. Meier, I. Katsounaros, K. J. J. Mayrhofer, Chem. Sci. 5, 631–638 (2014)CrossRefGoogle Scholar
  23. 23.
    I. Katsounaros, S. Cherevko, A. R. Zeradjanin, K. J. J. Mayrhofer, Angew. Chem. Int. Ed. 53, 102–121 (2014)CrossRefGoogle Scholar
  24. 24.
    R. M. Darling, J. P. Meyers, J. Electrochem. Soc. 150, A1523–A1527 (2003)CrossRefGoogle Scholar
  25. 25.
    S. G. Rinaldo, J. Stumper, M. Eikerling, J. Phys. Chem. C 114, 5773–5785 (2010)CrossRefGoogle Scholar
  26. 26.
    J. Rossmeisl, K. Chan, E. Skúlason, M. E. Björketun, V. Tripkovic, Catal. Today 262, 36–40 (2016)CrossRefGoogle Scholar
  27. 27.
    V. A. T. Dam, F. A. de Bruijn, J. Electrochem. Soc. 154, B494–B499 (2007)CrossRefGoogle Scholar
  28. 28.
    G. Jerkiewicz, G. Vatankhah, J. Lessard, M. P. Soriaga, Y. S. Park, Electrochim. Acta 49, 1451–1459 (2004)Google Scholar
  29. 29.
    Y. Furuya, T. Mashio, A. Ohma, N. Dale, K. Oshihara, G. Jerkiewicz, J. Chem. Phys. 141, 164705 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Huang, A. Malek, J. Zhang, M. H. Eikerling,  J. Phys. Chem. C 120, 13587–13595 (2016)CrossRefGoogle Scholar
  31. 31.
    U. Benedikt, W. B. Schneider, A. A. Auer, Phys. Chem. Chem. Phys. 15, 2712–2724 (2013)CrossRefGoogle Scholar
  32. 32.
    C. D. Taylor, M. Neurock, Curr. Opin. Solid State Mater. Sci. 9, 49–65 (2005)CrossRefGoogle Scholar
  33. 33.
    J. Rossmeisl, K. Chan, R. Ahmed, V. Tripkovic, M. E. Bjorketun, Phys. Chem. Chem. Phys. 15, 10321–10325 (2013)CrossRefGoogle Scholar
  34. 34.
    M. E. Bjorketun, J. Rossmeisl, K. R. Chan, Z. H. Zeng, R. Ahmed, V. Tripkovic, Abstr. Pap. Am. Chem. Soc. 246 (2013)Google Scholar
  35. 35.
    J. Rossmeisl, J. K. Norskov, C. D. Taylor, M. J. Janik, M. Neurock, J. Phys. Chem. B 110, 21833–21839 (2006)CrossRefGoogle Scholar
  36. 36.
    C. D. Taylor, S. A. Wasileski, J. S. Filhol, M. Neurock, Phys. Rev. B 73(16), (2006)Google Scholar
  37. 37.
    N. Bonnet, N. Marzari, Phys. Rev. Lett. 110, 086104 (2013)Google Scholar
  38. 38.
    S. Iyemperumal, N. A. Deskins, ChemPhysChem 18, (2017)Google Scholar
  39. 39.
    ​C. M. Gray, K. Saravanan, G. Wang, J. A. Keith, Mol. Simul. 43(5–6), 420–427 (2017)CrossRefGoogle Scholar
  40. 40.
    Y. Gohda, S. Schnur, A. Gross, Faraday Discuss. 140, 233–244 (2008)CrossRefGoogle Scholar
  41. 41.
    S. Schnur,  A. Groß, New J. Phys. 11, 125003 (2009)CrossRefGoogle Scholar
  42. 42.
    A. Gross, F. Gossenberger, X. H. Lin, M. Naderian, S. Sakong, T. Roman, J. Electrochem. Soc. 161, E3015–E3020 (2014)CrossRefGoogle Scholar
  43. 43.
    S. Sakong, M. Naderian, K. Mathew, R. G. Hennig, A. Gross, J. Chem. Phys. 142, 234107 (2015)CrossRefGoogle Scholar
  44. 44.
    V. Tripkovic, M. E. Björketun, E. Skúlason, J. Rossmeisl, Phys. Rev. B 84, 115452 (2011)CrossRefGoogle Scholar
  45. 45.
    M. A. Henderson, Surf. Sci. Rep. 46, 1–308 (2002)CrossRefGoogle Scholar
  46. 46.
    P. A. Thiel, T. E. Madey, Surf. Sci. Rep. 7, 211–385 (1987)CrossRefGoogle Scholar
  47. 47.
    H. Ogasawara, B. Brena, D. Nordlund, M. Nyberg, A. Pelmenschikov, L. G. Pettersson, A. Nilsson, Phys. Rev. Lett. 89, 276102 (2002)CrossRefGoogle Scholar
  48. 48.
    T. Schiros, L. A. Naslund, K. Andersson, J. Gyllenpalm, G. S. Karlberg, M. Odelius, H. Ogasawara, L. G. M. Pettersson, A. Nilsson, J. Phys. Chem. C 111, 15003–15012 (2007)CrossRefGoogle Scholar
  49. 49.
    A. Hodgson, S. Haq, Surf. Sci. Rep. 64, 381–451 (2009)CrossRefGoogle Scholar
  50. 50.
    S. Schnur, A. Gross, New J. Phys. 11, 125003 (2009)Google Scholar
  51. 51.
    J. Carrasco, A. Hodgson, A. Michaelides, Nat. Mater. 11, 667–674 (2012)CrossRefGoogle Scholar
  52. 52.
    G. Kresse, J. Hafner, Phys. Rev. B Condens. Matter  47, 558–561 (1993)CrossRefGoogle Scholar
  53. 53.
    G. Kresse, J. Hafner, Phys. Rev. B Condens. Matter 49, 14251–14269 (1994)CrossRefGoogle Scholar
  54. 54.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15–50 (1996)CrossRefGoogle Scholar
  55. 55.
    G. Kresse, J. Furthmuller, Phys. Rev. B Condens. Matter 54, 11169–11186 (1996)CrossRefGoogle Scholar
  56. 56.
    Y. K. Zhang, W. T. Yang, Phys. Rev. Lett. 80, 890–890 (1998)CrossRefGoogle Scholar
  57. 57.
    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  58. 58.
    P. E. Blochl, Phys. Rev. B 50, 17953–17979 (1994)CrossRefGoogle Scholar
  59. 59.
    P. Vassilev, R. A. van Santen, M. T. M. Koper, J. Chem. Phys. 122, 054701 (2005)Google Scholar
  60. 60.
    J. G. Wang, B. Hammer, J. Chem. Phys. 126, 184704 (2007)Google Scholar
  61. 61.
    L. Bengtsson, Phys. Rev. B 59, 12301–12304 (1999)CrossRefGoogle Scholar
  62. 62.
    R. B. Getman, Y. Xu, W F. Schneider, J. Phys. Chem. C  112, 9559–9572 (2008)CrossRefGoogle Scholar
  63. 63.
    M. Wakisaka, Y. Udagawa, H. Suzuki, H. Uchida, M. Watanabe, Energy Environ. Sci. 4, 1662–1666 (2011)CrossRefGoogle Scholar
  64. 64.
    S. K. Jo, J. White, ‎Surf. Sci. 261, 111–117 (1992)CrossRefGoogle Scholar
  65. 65.
    G. B. Fisher, Chem. Phys. Lett. 79, 452–458 (1981)CrossRefGoogle Scholar
  66. 66.
    G. N. Derry, J. Z. Zhang, Phys. Rev. B 39, 1940–1941 (1989)CrossRefGoogle Scholar
  67. 67.
    F. Gossenberger, T. Roman, K. Forster-Tonigold, A. Gross, Beilstein J. Nanotechnol. 5, 152–161 (2014)CrossRefGoogle Scholar
  68. 68.
    D. H. Parker, M. E. Bartram, B. E. Koel, Surf. Sci. 217, 489–510 (1989)CrossRefGoogle Scholar
  69. 69.
    J. Neugebauer, M. Scheffler, Phys. Rev. B 46, 16067 (1992)CrossRefGoogle Scholar
  70. 70.
    H. Thirumalai, J. R. Kitchin, Surf. Sci. 650, 196 (2015)Google Scholar
  71. 71.
    N. E. Singh-Miller, N. Marzari, Phys. Rev. B 80(23), 235407 (2009)Google Scholar
  72. 72.
    A. Patra, J. Bates, J. Sun, J. P. Perdew, arXiv preprint arXiv:1702.08515, (2017) Google Scholar
  73. 73.
    C. Fall, N. Binggeli, A. Baldereschi,  J. Phys. Condens. Matter 11(13), 2689 (1999)CrossRefGoogle Scholar
  74. 74.
    S. De Waele, K. Lejaeghere, M. Sluydts, S. Cottenier, Phys. Rev. B 94(23), 235418 (2016)CrossRefGoogle Scholar
  75. 75.
    S. Badwal, T. Bak, S. Jiang, J. Love, J. Nowotny, M. Rekas, C. Sorrell, E. Vance, J. Phys. Chem. Solids 62(4), 723–729 (2001)CrossRefGoogle Scholar
  76. 76.
    M. Kaack, D. Fick, Surf. Sci. 342(1–3), 111–118 (1995)CrossRefGoogle Scholar
  77. 77.
    M.P. Hyman, J.W. Medlin, J. Phys. Chem. B 109(13), 6304–6310 (2005)CrossRefGoogle Scholar
  78. 78.
    T. C. Leung, C. L. Kao, W. S. Su, Y. J. Feng, C. T. Chan, Phys. Rev. B 68(19), 195408–195404 (2003)CrossRefGoogle Scholar
  79. 79.
    A.J. Bard, L.R. Faulkner, Fundamentals and Applications. Electrochemical Methods, 2nd edn. (Wiley, New York, 2001)Google Scholar
  80. 80.
    E. Langenbach, A. Spitzer, H. Lüth, Surf. Sci. 147(1), 179–190 (1984)CrossRefGoogle Scholar
  81. 81.
    I. Villegas, M.J. Weaver, J. Phys. Chem. 100(50), 19502–19511 (1996)CrossRefGoogle Scholar
  82. 82.
    ​S. Schnur, A. Groß, Catal. Today 165(1), 129–137 (2011)CrossRefGoogle Scholar
  83. 83.
    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132(15), 154104 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of ChemistrySimon Fraser UniversityBurnabyCanada

Personalised recommendations