Advertisement

Mindfulness

pp 1–21 | Cite as

Mindfulness Meditators Do Not Show Differences in Electrophysiological Measures of Error Processing

  • Neil W. BaileyEmail author
  • Kavya Raj
  • Gabrielle Freedman
  • Bernadette M. Fitzgibbon
  • Nigel C. Rogasch
  • Nicholas T. Van Dam
  • Paul B. Fitzgerald
ORIGINAL PAPER
  • 7 Downloads

Abstract

Objectives

Mindfulness meditation may improve attention and self-regulation. One component of attention and self-regulation that may allow these improvements is performance monitoring. Neural correlates of performance monitoring can be objectively measured with electroencephalogram (EEG) via the error-related negativity (ERN) and error positivity (Pe). Previous research assessing the ERN and Pe in meditators has resulted in inconsistent findings; some have reported alteration in peak amplitudes from both very brief meditation practice and long-term meditation practice, while others have failed to provide evidence for differences in the ERN or Pe. However, recently developed EEG analysis techniques allow for more rigorous analyses than have been used in past investigations.

Methods

The current study measured the ERN and Pe, as well as post-error alpha suppression, during a Go/Nogo task, and emotional and colour Stroop tasks. The measures were compared between 22 experienced meditators (mean of 8 years of practice) and 20 healthy controls.

Results

The results suggested no differences in the ERN, Pe, or post-error alpha suppression (all p > 0.05), even when varying multiple analysis parameters. The study showed equivalent statistical power to previous research, and > 85% power to detect medium effect sizes present in previous research. Bayes Factor analysis indicated the null hypotheses were > 3.5 more likely than any of the alternative hypotheses for the ERN or Pe.

Conclusions

These results suggest that meditation may not alter neural activity related to error processing, despite prior research suggesting that it does.

Keywords

Mindfulness Meditation EEG Error processing ERN Pe 

Notes

Author Contributions

NWB designed and oversaw the study, assisted with data collection, performed the data analysis, and wrote the paper. KR performed data collection, assisted with data analysis, and collaborated with writing of the study. GF performed data collection, assisted with data analysis, and collaborated with writing of the study. BMF assisted with study design and writing of the paper. NCR assisted with study design and writing of the paper. NTVD collaborated in the interpretation of results, writing and editing of the final manuscript. PBF assisted with study design and writing and editing of the final manuscript.

Funding

PBF is supported by a National Health and Medical Research Council of Australia Practitioner Fellowship (6069070). NCR is supported by a National Health and Medical Research Council of Australia Fellowship (1072057).

Compliance with Ethical Standards

All procedures performed in the study involving human participants were in accordance with the ethical standards of both The Alfred Hospital and Monash University ethical research committee and with the 1964 Helsinki declaration and its later amendments. Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

PBF has received equipment for research from MagVenture A/S, Medtronic Ltd., Cervel Neurotech and Brainsway Ltd. and funding for research from Neuronetics and Cervel Neurotech. PBF is on the scientific advisory board for Bionomics Ltd. All other authors have no conflicts to report.

Supplementary material

12671_2019_1096_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 19 kb)

References

  1. Aftanas, L., & Golosheykin, S. (2005). Impact of regular meditation practice on EEG activity at rest and during evoked negative emotions. International Journal of Neuroscience, 115(6), 893–909.CrossRefGoogle Scholar
  2. Allen, M., Dietz, M., Blair, K. S., van Beek, M., Rees, G., Vestergaard-Poulsen, P., et al. (2012). Cognitive-affective neural plasticity following active-controlled mindfulness intervention. Journal of Neuroscience, 32(44), 15601–15610.CrossRefGoogle Scholar
  3. Andreu, C. I., Moënne-Loccoz, C., López, V., Slagter, H. A., Franken, I. H., & Cosmelli, D. (2017). Behavioral and electrophysiological evidence of enhanced performance monitoring in meditators. Mindfulness, 8(6), 1603–1614.CrossRefGoogle Scholar
  4. Baer, R. A., Smith, G. T., Hopkins, J., Krietemeyer, J., & Toney, L. (2006). Using self-report assessment methods to explore facets of mindfulness. Assessment, 13(1), 27–45.CrossRefGoogle Scholar
  5. Bailey, N., Freedman, G., Raj, K., Sullivan, C., Rogasch, N., Chung, S., et al. (2018). Mindfulness meditators show altered distributions of early and late neural activity markers of attention in a response inhibition task. bioRxiv, 396259.Google Scholar
  6. Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck Depression Inventory-II. San Antonio, 78(2), 490–498.Google Scholar
  7. Bing-Canar, H., Pizzuto, J., & Compton, R. J. (2016). Mindfulness-of-breathing exercise modulates EEG alpha activity during cognitive performance. Psychophysiology, 53(9), 1366–1376.CrossRefGoogle Scholar
  8. Bishop, S. R., Lau, M., Shapiro, S., Carlson, L., Anderson, N. D., Carmody, J., et al. (2004). Mindfulness: a proposed operational definition. Clinical Psychology: Science and Practice, 11(3), 230–241.Google Scholar
  9. Bostanov, V., Keune, P. M., Kotchoubey, B., & Hautzinger, M. (2012). Event-related brain potentials reflect increased concentration ability after mindfulness-based cognitive therapy for depression: a randomized clinical trial. Psychiatry Research, 199(3), 174–180.CrossRefGoogle Scholar
  10. Brázdil, M., Roman, R., Daniel, P., & Rektor, I. (2005). Intracerebral error-related negativity in a simple go/nogo task. Journal of Psychophysiology, 19(4), 244–255.CrossRefGoogle Scholar
  11. Buzsáki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience, 13(6), 407.CrossRefGoogle Scholar
  12. Carp, J., & Compton, R. J. (2009). Alpha power is influenced by performance errors. Psychophysiology, 46(2), 336–343.CrossRefGoogle Scholar
  13. Cavanagh, J. F., Zambrano-Vazquez, L., & Allen, J. J. (2012). Theta lingua franca: a common mid-frontal substrate for action monitoring processes. Psychophysiology, 49(2), 220–238.CrossRefGoogle Scholar
  14. Cheng, K. S., Chang, Y. F., Han, R. P., & Lee, P. F. (2017). Enhanced conflict monitoring via a short-duration, video-assisted deep breathing in healthy young adults: an event-related potential approach through the Go/NoGo paradigm. PeerJ, 5, e3857.CrossRefGoogle Scholar
  15. Compton, R. J., Bissey, B., & Worby-Selim, S. (2014). Task motivation influences alpha suppression following errors. Psychophysiology, 51(7), 585–595.CrossRefGoogle Scholar
  16. Compton, R. J., Hofheimer, J., & Kazinka, R. (2013). Stress regulation and cognitive control: evidence relating cortisol reactivity and neural responses to errors. Cognitive, Affective, & Behavioral Neuroscience, 13(1), 152–163.CrossRefGoogle Scholar
  17. Compton, R. J., Robinson, M. D., Ode, S., Quandt, L. C., Fineman, S. L., & Carp, J. (2008). Error-monitoring ability predicts daily stress regulation. Psychological Science, 19(7), 702–708.CrossRefGoogle Scholar
  18. Davies, P. L., Segalowitz, S. J., Dywan, J., & Pailing, P. E. (2001). Error-negativity and positivity as they relate to other ERP indices of attentional control and stimulus processing. Biological Psychology, 56(3), 191–206.CrossRefGoogle Scholar
  19. Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a neural system for error detection and compensation. Psychological Science, 5(5), 303–305.CrossRefGoogle Scholar
  20. Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.CrossRefGoogle Scholar
  21. Endrass, T., Klawohn, J., Preuss, J., & Kathmann, N. (2012). Temporospatial dissociation of Pe subcomponents for perceived and unperceived errors. Frontiers in Human Neuroscience, 6, 178.CrossRefGoogle Scholar
  22. Falkenstein, M. (2004). ERP correlates of erroneous performance. Errors, conflicts, and the brain. Current Opinions on Performance Monitoring, 1, 5–14.Google Scholar
  23. Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: a tutorial. Biological Psychology, 51(2–3), 87–107.CrossRefGoogle Scholar
  24. Fischer, A. G., Klein, T. A., & Ullsperger, M. (2017). Comparing the error-related negativity across groups: the impact of error-and trial-number differences. Psychophysiology, 54(7), 998–1009.CrossRefGoogle Scholar
  25. Fissler, M., Winnebeck, E., Schroeter, T. A., Gummbersbach, M., Huntenburg, J. M., Gärtner, M., & Barnhofer, T. (2017). Brief training in mindfulness may normalize a blunted error-related negativity in chronically depressed patients. Cognitive, Affective, & Behavioral Neuroscience, 17(6), 1164–1175.CrossRefGoogle Scholar
  26. Fox, K. C., Nijeboer, S., Dixon, M. L., Floman, J. L., Ellamil, M., Rumak, S. P., et al. (2014). Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners. Neuroscience & Biobehavioral Reviews, 43, 48–73.CrossRefGoogle Scholar
  27. Friedman, D. (2012). The components of aging. In S. J. Luck & E. S. Kappenman (Eds.), Oxford handbook of event-related potential components (pp. 1–66). Oxford: Oxford University Press.Google Scholar
  28. Froeliger, B., Garland, E. L., Modlin, L. A., & McClernon, F. J. (2012). Neurocognitive correlates of the effects of yoga meditation practice on emotion and cognition: a pilot study. Frontiers in Integrative Neuroscience, 6, 48.CrossRefGoogle Scholar
  29. Geburek, A. J., Rist, F., Gediga, G., Stroux, D., & Pedersen, A. (2013). Electrophysiological indices of error monitoring in juvenile and adult attention deficit hyperactivity disorder (ADHD)—A meta-analytic appraisal. International Journal of Psychophysiology, 87(3), 349–362.Google Scholar
  30. Gehring, W. J., Goss, B., Coles, M. G., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4(6), 385–390.CrossRefGoogle Scholar
  31. Gehring, W. J., Liu, Y., Orr, J. M., & Carp, J. (2012). The error-related negativity (ERN/Ne). In S. J. Luck & E. S. Kappenman (Eds.), The Oxford handbook of event-related potential components (pp. 231–291). Oxford: Oxford University Press.Google Scholar
  32. Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24(2), 95–112.CrossRefGoogle Scholar
  33. Hasenkamp, W., & Barsalou, L. W. (2012). Effects of meditation experience on functional connectivity of distributed brain networks. Frontiers in Human Neuroscience, 6, 38.CrossRefGoogle Scholar
  34. Hergueta, T., Baker, R., & Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 59(Suppl 20), 2233.Google Scholar
  35. Herrmann, M. J., Römmler, J., Ehlis, A.-C., Heidrich, A., & Fallgatter, A. J. (2004). Source localization (LORETA) of the error-related-negativity (ERN/Ne) and positivity (Pe). Cognitive Brain Research, 20(2), 294–299.CrossRefGoogle Scholar
  36. Hughes, G., & Yeung, N. (2011). Dissociable correlates of response conflict and error awareness in error-related brain activity. Neuropsychologia, 49(3), 405–415.CrossRefGoogle Scholar
  37. Jeffreys, H. (1961). Theory of probability (3rd edition). Oxford: Oxford University Press. MR0187257, 432.Google Scholar
  38. Jha, A. P., Krompinger, J., & Baime, M. J. (2007). Mindfulness training modifies subsystems of attention. Cognitive, Affective, & Behavioral Neuroscience, 7(2), 109–119.CrossRefGoogle Scholar
  39. Kabat-Zinn, J. (1994). Wherever you go, there you are: mindfulness meditation in everyday life. New York: Hyperion.Google Scholar
  40. Kerr, C. E., Jones, S. R., Wan, Q., Pritchett, D. L., Wasserman, R. H., Wexler, A., et al. (2011). Effects of mindfulness meditation training on anticipatory alpha modulation in primary somatosensory cortex. Brain Research Bulletin, 85(3–4), 96–103.CrossRefGoogle Scholar
  41. Kilner, J. (2013). Bias in a common EEG and MEG statistical analysis and how to avoid it. Clinical Neurophysiology, 124(10), 2062–2063.CrossRefGoogle Scholar
  42. Koenig, T., Kottlow, M., Stein, M., & Melie-García, L. (2011). Ragu: a free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics. Computational Intelligence and Neuroscience, 2011, 4.CrossRefGoogle Scholar
  43. Larson, M. J., Baldwin, S. A., Good, D. A., & Fair, J. E. (2010). Temporal stability of the error-related negativity (ERN) and post-error positivity (Pe): the role of number of trials. Psychophysiology, 47(6), 1167–1171.PubMedGoogle Scholar
  44. Larson, M. J., & Clayson, P. E. (2011). The relationship between cognitive performance and electrophysiological indices of performance monitoring. Cognitive, Affective, & Behavioral Neuroscience, 11(2), 159–171.CrossRefGoogle Scholar
  45. Larson, M. J., Steffen, P. R., & Primosch, M. (2013). The impact of a brief mindfulness meditation intervention on cognitive control and error-related performance monitoring. Frontiers in Human Neuroscience, 7, 308.CrossRefGoogle Scholar
  46. Lutz, A., Slagter, H. A., Rawlings, N. B., Francis, A. D., Greischar, L. L., & Davidson, R. J. (2009). Mental training enhances attentional stability: neural and behavioral evidence. Journal of Neuroscience, 29(42), 13418–13427.CrossRefGoogle Scholar
  47. Meyer, A. (2016). Developing psychiatric biomarkers: a review focusing on the error-related negativity as a biomarker for anxiety. Current Treatment Options in Psychiatry, 3(4), 356–364.CrossRefGoogle Scholar
  48. Navarro-Cebrian, A., Knight, R. T., & Kayser, A. S. (2013). Error-monitoring and post-error compensations: dissociation between perceptual failures and motor errors with and without awareness. Journal of Neuroscience, 33(30), 12375–12383.CrossRefGoogle Scholar
  49. Nieuwenhuis, S., Ridderinkhof, K. R., Blom, J., Band, G. P., & Kok, A. (2001). Error-related brain potentials are differentially related to awareness of response errors: evidence from an antisaccade task. Psychophysiology, 38(5), 752–760.CrossRefGoogle Scholar
  50. O’Connell, R. G., Dockree, P. M., Bellgrove, M. A., Kelly, S. P., Hester, R., Garavan, H., et al. (2007). The role of cingulate cortex in the detection of errors with and without awareness: a high-density electrical mapping study. European Journal of Neuroscience, 25(8), 2571–2579.CrossRefGoogle Scholar
  51. Olvet, D. M., & Hajcak, G. (2009). The stability of error-related brain activity with increasing trials. Psychophysiology, 46(5), 957–961.CrossRefGoogle Scholar
  52. Overbeek, T. J., Nieuwenhuis, S., & Ridderinkhof, K. R. (2005). Dissociable components of error processing: on the functional significance of the Pe vis-à-vis the ERN/Ne. Journal of Psychophysiology, 19(4), 319–329.CrossRefGoogle Scholar
  53. Palmer, J. A., Makeig, S., Kreutz-Delgado, K., & Rao, B. D. (2008). Newton method for the ICA mixture model. Paper presented at the Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference.Google Scholar
  54. Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72(2), 184–187.CrossRefGoogle Scholar
  55. Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 111–163.Google Scholar
  56. Ridderinkhof, K. R., Ramautar, J. R., & Wijnen, J. G. (2009). To PE or not to PE: a P3-like ERP component reflecting the processing of response errors. Psychophysiology, 46(3), 531–538.CrossRefGoogle Scholar
  57. Rietdijk, W. J., Franken, I. H., & Thurik, A. R. (2014). Internal consistency of event-related potentials associated with cognitive control: N2/P3 and ERN/Pe. PLoS One, 9(7), e102672.CrossRefGoogle Scholar
  58. Rouder, J. N., Morey, R. D., Verhagen, J., Swagman, A. R., & Wagenmakers, E.-J. (2017). Bayesian analysis of factorial designs. Psychological Methods, 22(2), 304.CrossRefGoogle Scholar
  59. Sanger, K. L., & Dorjee, D. (2016). Mindfulness training with adolescents enhances metacognition and the inhibition of irrelevant stimuli: evidence from event-related brain potentials. Trends in Neuroscience and Education, 5(1), 1–11.CrossRefGoogle Scholar
  60. Saunders, B., Rodrigo, A. H., & Inzlicht, M. (2016). Mindful awareness of feelings increases neural performance monitoring. Cognitive, Affective, & Behavioral Neuroscience, 16(1), 93–105.CrossRefGoogle Scholar
  61. Schoenberg, P. L., Hepark, S., Kan, C. C., Barendregt, H. P., Buitelaar, J. K., & Speckens, A. E. (2014). Effects of mindfulness-based cognitive therapy on neurophysiological correlates of performance monitoring in adult attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 125(7), 1407–1416.CrossRefGoogle Scholar
  62. Schroder, H. S., & Infantolino, Z. P. (2013). Distinguishing between types of errors and adjustments. Journal of Neuroscience, 33(47), 18356–18357.CrossRefGoogle Scholar
  63. Shalgi, S., Barkan, I., & Deouell, L. Y. (2009). On the positive side of error processing: error-awareness positivity revisited. European Journal of Neuroscience, 29(7), 1522–1532.CrossRefGoogle Scholar
  64. Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217–240.CrossRefGoogle Scholar
  65. Slagter, H. A., Lutz, A., Greischar, L. L., Francis, A. D., Nieuwenhuis, S., Davis, J. M., & Davidson, R. J. (2007). Mental training affects distribution of limited brain resources. PLoS Biology, 5(6), e138.CrossRefGoogle Scholar
  66. Smart, C. M., & Segalowitz, S. J. (2017). Respond, don’t react: the influence of mindfulness training on performance monitoring in older adults. Cognitive, Affective, & Behavioral Neuroscience, 17(6), 1151–1163.CrossRefGoogle Scholar
  67. Steele, V. R., Anderson, N. E., Claus, E. D., Bernat, E. M., Rao, V., Assaf, M., et al. (2016). Neuroimaging measures of error-processing: extracting reliable signals from event-related potentials and functional magnetic resonance imaging. NeuroImage, 132, 247–260.CrossRefGoogle Scholar
  68. Steer, R. A., & Beck, A. T. (1997). Beck anxiety inventory.Google Scholar
  69. Tang, Y.-Y., Hölzel, B. K., & Posner, M. I. (2015). The neuroscience of mindfulness meditation. Nature Reviews Neuroscience, 16(4), 213.CrossRefGoogle Scholar
  70. Tang, Y.-Y., Lu, Q., Geng, X., Stein, E. A., Yang, Y., & Posner, M. I. (2010). Short-term meditation induces white matter changes in the anterior cingulate. Proceedings of the National Academy of Sciences, 107(35), 15649–15652.CrossRefGoogle Scholar
  71. Tang, Y.-Y., Ma, Y., Wang, J., Fan, Y., Feng, S., Lu, Q., et al. (2007). Short-term meditation training improves attention and self-regulation. Proceedings of the National Academy of Sciences, 104(43), 17152–17156.CrossRefGoogle Scholar
  72. Teper, R., & Inzlicht, M. (2012). Meditation, mindfulness and executive control: the importance of emotional acceptance and brain-based performance monitoring. Social Cognitive and Affective Neuroscience, 8(1), 85–92.CrossRefGoogle Scholar
  73. Teper, R., Segal, Z. V., & Inzlicht, M. (2013). Inside the mindful mind: how mindfulness enhances emotion regulation through improvements in executive control. Current Directions in Psychological Science, 22(6), 449–454.CrossRefGoogle Scholar
  74. Ullsperger, M., Harsay, H. A., Wessel, J. R., & Ridderinkhof, K. R. (2010). Conscious perception of errors and its relation to the anterior insula. Brain Structure and Function, 214(5–6), 629–643.CrossRefGoogle Scholar
  75. Van Dam, N. T., van Vugt, M. K., Vago, D. R., Schmalzl, L., Saron, C. D., Olendzki, A., et al. (2018). Mind the hype: a critical evaluation and prescriptive agenda for research on mindfulness and meditation. Perspectives on Psychological Science, 13(1), 36–61.CrossRefGoogle Scholar
  76. van Driel, J., Ridderinkhof, K. R., & Cohen, M. X. (2012). Not all errors are alike: theta and alpha EEG dynamics relate to differences in error-processing dynamics. Journal of Neuroscience, 32(47), 16795–16806.CrossRefGoogle Scholar
  77. Van Noordt, S. J., Campopiano, A., & Segalowitz, S. J. (2016). A functional classification of medial frontal negativity ERPs: theta oscillations and single subject effects. Psychophysiology, 53(9), 1317–1334.CrossRefGoogle Scholar
  78. van Noordt, S. J., Desjardins, J. A., & Segalowitz, S. J. (2015). Watch out! Medial frontal cortex is activated by cues signaling potential changes in response demands. NeuroImage, 114, 356–370.CrossRefGoogle Scholar
  79. Van Veen, V., & Carter, C. S. (2002). The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiology & Behavior, 77(4–5), 477–482.CrossRefGoogle Scholar
  80. Vocat, R., Pourtois, G., & Vuilleumier, P. (2008). Unavoidable errors: a spatio-temporal analysis of time-course and neural sources of evoked potentials associated with error processing in a speeded task. Neuropsychologia, 46(10), 2545–2555.CrossRefGoogle Scholar
  81. Vøllestad, J., Nielsen, M. B., & Nielsen, G. H. (2012). Mindfulness-and acceptance-based interventions for anxiety disorders: a systematic review and meta-analysis. British Journal of Clinical Psychology, 51(3), 239–260.CrossRefGoogle Scholar
  82. Walach, H., Buchheld, N., Buttenmüller, V., Kleinknecht, N., & Schmidt, S. (2006). Measuring mindfulness—the Freiburg mindfulness inventory (FMI). Personality and Individual Differences, 40(8), 1543–1555.CrossRefGoogle Scholar
  83. Xue, S.-W., Tang, Y.-Y., Tang, R., & Posner, M. I. (2014). Short-term meditation induces changes in brain resting EEG theta networks. Brain and Cognition, 87, 1–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Epworth Centre for Innovations in Mental Health, Epworth Healthcare, The Epworth ClinicMelbourneAustralia
  2. 2.Monash Alfred Psychiatry Research CentreMelbourneAustralia
  3. 3.Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences and Monash Biomedical ImagingMonash UniversityMelbourneAustralia
  4. 4.School of Psychological SciencesThe University of MelbourneMelbourneAustralia
  5. 5.Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations