Plastic Changes in the White Matter Induced by Templestay, a 4-Day Intensive Mindfulness Meditation Program
- 101 Downloads
Abstract
Objectives
Further explorations are needed to determine how behavioral-lifestyle changes of various types influence neural plasticity in the white matter (WM); in particular, little is known about the influence of one’s self-discipline on changes in WM. A retreat program called Templestay follows the self-discipline practices used by Buddhist monks for 3 nights and 4 days; this program mainly involves meditation and other forms of behavioral-lifestyle modifications. In this study, we explored how neural plasticity occurs in WM structures in response to a relatively short retreat program.
Methods
We designed a longitudinal study that investigates WM neural plasticity over the course of Templestay. The Templestay group experienced the daily life of Buddhist practitioners, whereas the control group only participated in a retreat program at the same temple. Diffusion tensor imaging data were acquired before and after the Templestay program to investigate neural plasticity in the WM. We examined changes in the fractional anisotropy maps.
Results
We observed significant changes in the fractional anisotropy maps at the left superior longitudinal fasciculus, left posterior corona radiata, and splenium of the corpus callosum after 4 days of Templestay. Based on the results of our study, a 4-day meditation period in combination with behavioral-lifestyle modifications facilitates WM myelination in regions important for cognitive functions.
Conclusions
These results provide evidence of very rapid structural remodeling of the WM, suggesting that activity-dependent changes in myelination are induced by Templestay, a relatively understudied self-discipline program that includes behavioral-lifestyle modifications.
Keywords
Mindfulness training Meditation Neural plasticity Templestay Diffusion tensor imaging Fractional anisotropyNotes
Data Availability Statement
All data are available at the Open Science Framework (https://osf.io/2x5wg/).
Author Contributions
YBY and DB: analyzed the data and wrote the manuscript. SK, WJH, and KKC: acquired the MRI data. TYL and SNK: collaborated in recruitment and study procedures. KYL and HYP: participated in theoretical development. JSK: collaborated in the writing and editing of the final manuscript. YBY and DB contributed equally to this work. All authors approved the final version of the manuscript for submission.
Funding
This study was supported by the Brain Research Program through the National Research Foundation of Korea, funded by the Ministry of Science, ICT and Future Planning (Grant No. 2017M3C7A1029610; Grant No. 2016R1E1A1A02921618).
Compliance with Ethical Standards
Ethical Approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The present study was approved by the Institutional Review Board of Seoul National University Hospital.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Conflict of interest
The authors declare that they have no conflict of interest.
Supplementary material
References
- Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance - Series B, 111(3), 209–219.CrossRefGoogle Scholar
- Bloss, E. B., Janssen, W. G., Ohm, D. T., Yuk, F. J., Wadsworth, S., Saardi, K. M., et al. (2011). Evidence for reduced experience-dependent dendritic spine plasticity in the aging prefrontal cortex. The Journal of Neuroscience, 31(21), 7831–7839. https://doi.org/10.1523/JNEUROSCI.0839-11.2011.CrossRefPubMedPubMedCentralGoogle Scholar
- Borod, J. C. (1992). Interhemispheric and intrahemispheric control of emotion: a focus on unilateral brain damage. Journal of Consulting and Clinical Psychology, 60(3), 339–348.CrossRefGoogle Scholar
- Butler, A. C., Chapman, J. E., Forman, E. M., & Beck, A. T. (2006). The empirical status of cognitive-behavioral therapy: a review of meta-analyses. Clinical Psychology Review, 26(1), 17–31.CrossRefGoogle Scholar
- Cahn, B. R., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychological Bulletin, 132(2), 180–211. https://doi.org/10.1037/0033-2909.132.2.180.CrossRefPubMedGoogle Scholar
- Caroni, P., Chowdhury, A., & Lahr, M. (2014). Synapse rearrangements upon learning: from divergent–sparse connectivity to dedicated sub-circuits. Trends in Neurosciences, 37(10), 604–614.CrossRefGoogle Scholar
- Chetelat, G., Mezenge, F., Tomadesso, C., Landeau, B., Arenaza-Urquijo, E., Rauchs, G., et al. (2017). Reduced age-associated brain changes in expert meditators: a multimodal neuroimaging pilot study. Scientific Reports, 7(1), 10160. https://doi.org/10.1038/s41598-017-07764-x.CrossRefPubMedPubMedCentralGoogle Scholar
- Cho, K. I., Shenton, M. E., Kubicki, M., Jung, W. H., Lee, T. Y., Yun, J. Y., et al. (2016). Altered thalamo-cortical white matter connectivity: probabilistic tractography study in clinical-high risk for psychosis and first-episode psychosis. Schizophrenia Bulletin, 42(3), 723–731. https://doi.org/10.1093/schbul/sbv169.CrossRefPubMedGoogle Scholar
- Cho, K. I. K., Kim, M., Yoon, Y. B., Lee, J., Lee, T. Y., & Kwon, J. S. (2019). Disturbed thalamocortical connectivity in unaffected relatives of schizophrenia patients with a high genetic loading. Australian and New Zealand Journal of Psychiatry, 6, 4867418824020. https://doi.org/10.1177/0004867418824020.CrossRefGoogle Scholar
- Chourbaji, S., Brandwein, C., & Gass, P. (2011). Altering BDNF expression by genetics and/or environment: impact for emotional and depression-like behaviour in laboratory mice. Neuroscience and Biobehavioral Reviews, 35(3), 599–611. https://doi.org/10.1016/j.neubiorev.2010.07.003.CrossRefPubMedGoogle Scholar
- Chung, M. K., Dalton, K. M., Alexander, A. L., & Davidson, R. J. (2004). Less white matter concentration in autism: 2D voxel-based morphometry. Neuroimage, 23(1), 242–251.CrossRefGoogle Scholar
- Cotier, F. A., Zhang, R., & Lee, T. M. (2017). A longitudinal study of the effect of short-term meditation training on functional network organization of the aging brain. Scientific Reports, 7(1), 598. https://doi.org/10.1038/s41598-017-00678-8.CrossRefPubMedPubMedCentralGoogle Scholar
- Driemeyer, J., Boyke, J., Gaser, C., Büchel, C., & May, A. (2008). Changes in gray matter induced by learning—revisited. PLoS One, 3(7), e2669.CrossRefGoogle Scholar
- Driessen, E., & Hollon, S. D. (2010). Cognitive behavioral therapy for mood disorders: efficacy, moderators and mediators. Psychiatric Clinics of North America, 33(3), 537–555.CrossRefGoogle Scholar
- Engvig, A., Fjell, A. M., Westlye, L. T., Moberget, T., Sundseth, O., Larsen, V. A., et al. (2012). Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study. Human Brain Mapping, 33(10), 2390–2406. https://doi.org/10.1002/hbm.21370.CrossRefPubMedGoogle Scholar
- Fields, D. R. (2015). A new mechanism of nervous system plasticity: activity-dependent myelination. Nature Reviews. Neuroscience, 16(12), 756–767. https://doi.org/10.1038/nrn4023.CrossRefPubMedPubMedCentralGoogle Scholar
- Fox, K., Nijeboer, S., Dixon, M. L., Floman, J. L., Ellamil, M., Rumak, S. P., et al. (2014). Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners. Neuroscience and Biobehavioral Reviews, 43, 48–73. https://doi.org/10.1016/j.neubiorev.2014.03.016.CrossRefPubMedGoogle Scholar
- Herrington, J. D., Heller, W., Mohanty, A., Engels, A. S., Banich, M. T., Webb, A. G., et al. (2010). Localization of asymmetric brain function in emotion and depression. Psychophysiology, 47(3), 442–454.CrossRefGoogle Scholar
- Hofer, S., & Frahm, J. (2006). Topography of the human corpus callosum revisited--comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage, 32(3), 989–994. https://doi.org/10.1016/j.neuroimage.2006.05.044.CrossRefPubMedGoogle Scholar
- Hofstetter, S., Tavor, I., Tzur Moryosef, S., & Assaf, Y. (2013). Short-term learning induces white matter plasticity in the fornix. The Journal of Neuroscience, 33(31), 12844–12850. https://doi.org/10.1523/JNEUROSCI.4520-12.2013.CrossRefPubMedPubMedCentralGoogle Scholar
- Hwang, W. J., Lee, T. Y., Lim, K. O., Bae, D., Kwak, S., Park, H. Y., et al. (2018). The effects of four days of intensive mindfulness meditation training (Templestay program) on resilience to stress: a randomized controlled trial. Psychology, Health & Medicine, 23(5), 497-504. https://doi.org/10.1080/13548506.2017.1363400.CrossRefGoogle Scholar
- Juraska, J. M., & Kopcik, J. R. (1988). Sex and environmental influences on the size and ultrastructure of the rat corpus callosum. Brain Research, 450(1-2), 1–8.CrossRefGoogle Scholar
- Kang, D.-H., Jo, H. J., Jung, W. H., Kim, S. H., Jung, Y.-H., Choi, C.-H., et al. (2013). The effect of meditation on brain structure: cortical thickness mapping and diffusion tensor imaging. Social Cognitive and Affective Neuroscience, 8(1), 27–33. https://doi.org/10.1093/scan/nss056.CrossRefPubMedGoogle Scholar
- Karlsgodt, K. H., van Erp, T. G., Poldrack, R. A., Bearden, C. E., Nuechterlein, K. H., & Cannon, T. D. (2008). Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biological Psychiatry, 63(5), 512–518.CrossRefGoogle Scholar
- Klimecki, O. M., Leiberg, S., Lamm, C., & Singer, T. (2013). Functional neural plasticity and associated changes in positive affect after compassion training. Cerebral Cortex, 23(7), 1552–1561. https://doi.org/10.1093/cercor/bhs142.CrossRefPubMedGoogle Scholar
- Kucyi, A., Hodaie, M., & Davis, K. D. (2012). Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience-and attention-related brain networks. Journal of Neurophysiology, 108(12), 3382–3392.CrossRefGoogle Scholar
- Kyeong, S., Kim, J., Kim, D. J., Kim, H. E., & Kim, J.-J. (2017). Effects of gratitude meditation on neural network functional connectivity and brain-heart coupling. Scientific Reports, 7(1), 5058. https://doi.org/10.1038/s41598-017-05520-9.CrossRefPubMedPubMedCentralGoogle Scholar
- Lazar, S. W., Kerr, C. E., Wasserman, R. H., Gray, J. R., Greve, D. N., Treadway, M. T., et al. (2005). Meditation experience is associated with increased cortical thickness. Neuroreport, 16(17), 1893–1897.CrossRefGoogle Scholar
- Lehéricy, S., Ducros, M., De Moortele, V., Francois, C., Thivard, L., Poupon, C., et al. (2004). Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Annals of Neurology, 55(4), 522–529.CrossRefGoogle Scholar
- Lundgaard, I., Luzhynskaya, A., Stockley, J. H., Wang, Z., Evans, K. A., Swire, M., et al. (2013). Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biology, 11(12), e1001743.CrossRefGoogle Scholar
- Lutz, A., McFarlin, D. R., Perlman, D. M., Salomons, T. V., & Davidson, R. J. (2013). Altered anterior insula activation during anticipation and experience of painful stimuli in expert meditators. Neuroimage, 64, 538–546. https://doi.org/10.1016/j.neuroimage.2012.09.030.CrossRefPubMedGoogle Scholar
- Makris, N., Kennedy, D. N., McInerney, S., Sorensen, A. G., Wang, R., Caviness, V. S., Jr., et al. (2005). Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cerebral Cortex, 15(6), 854–869. https://doi.org/10.1093/cercor/bhh186.CrossRefPubMedGoogle Scholar
- Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: the default network and stimulus-independent thought. Science, 315(5810), 393–395.CrossRefGoogle Scholar
- Mori, S., Wakana, S., Van Zijl, P. C., & Nagae-Poetscher, L. (2005). MRI atlas of human white matter. Amsterdam: ElsevierGoogle Scholar
- Nagy, Z., Westerberg, H., & Klingberg, T. (2004). Maturation of white matter is associated with the development of cognitive functions during childhood. Journal of Cognitive Neuroscience, 16(7), 1227–1233. https://doi.org/10.1162/0898929041920441.CrossRefPubMedGoogle Scholar
- Oertel-Knochel, V., Knochel, C., Stablein, M., & Linden, D. (2012). Abnormal functional and structural asymmetry as biomarker for schizophrenia. Current Topics in Medicinal Chemistry, 12(21), 2434–2451.CrossRefGoogle Scholar
- Ota, M., Obata, T., Akine, Y., Ito, H., Ikehira, H., Asada, T., et al. (2006). Age-related degeneration of corpus callosum measured with diffusion tensor imaging. Neuroimage, 31(4), 1445–1452. https://doi.org/10.1016/j.neuroimage.2006.02.008.CrossRefPubMedGoogle Scholar
- Russo-Neustadt, A. (2003)Brain-derived neurotrophic factor, behavior, and new directions for the treatment of mental disorders. In Seminars in Clinical Neuropsychiatry, (Vol. 8, pp. 109-118, Vol. 2)CrossRefGoogle Scholar
- Sack, A. T., Camprodon, J. A., Pascual-Leone, A., & Goebel, R. (2005). The dynamics of interhemispheric compensatory processes in mental imagery. Science, 308(5722), 702–704.CrossRefGoogle Scholar
- Sampaio-Baptista, C., Khrapitchev, A. A., Foxley, S., Schlagheck, T., Scholz, J., Jbabdi, S., et al. (2013). Motor skill learning induces changes in white matter microstructure and myelination. The Journal of Neuroscience, 33(50), 19499–19503. https://doi.org/10.1523/JNEUROSCI.3048-13.2013.CrossRefPubMedPubMedCentralGoogle Scholar
- Scholz, J., Klein, M. C., Behrens, T. E., & Johansen-Berg, H. (2009). Training induces changes in white-matter architecture. Nature Neuroscience, 12(11), 1370–1371. https://doi.org/10.1038/nn.2412.CrossRefPubMedPubMedCentralGoogle Scholar
- Schulte, T., Sullivan, E. V., Müller-Oehring, E., Adalsteinsson, E., & Pfefferbaum, A. (2005). Corpus callosal microstructural integrity influences interhemispheric processing: a diffusion tensor imaging study. Cerebral Cortex, 15(9), 1384–1392.CrossRefGoogle Scholar
- Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage, 31(4), 1487–1505. https://doi.org/10.1016/j.neuroimage.2006.02.024.CrossRefPubMedGoogle Scholar
- Stadlbauer, A., Salomonowitz, E., Strunk, G., Hammen, T., & Ganslandt, O. (2008). Age-related degradation in the central nervous system: assessment with diffusion-tensor imaging and quantitative fiber tracking. Radiology, 247(1), 179–188. https://doi.org/10.1148/radiol.2471070707.CrossRefPubMedGoogle Scholar
- Tang, Y. Y., Ma, Y., Fan, Y., Feng, H., Wang, J., Feng, S., et al. (2009). Central and autonomic nervous system interaction is altered by short-term meditation. Proceedings of the National Academy of Sciences of the United States of America, 106(22), 8865–8870. https://doi.org/10.1073/pnas.0904031106.CrossRefPubMedPubMedCentralGoogle Scholar
- Tang, Y.-Y., Lu, Q., Geng, X., Stein, E. A., Yang, Y., & Posner, M. I. (2010). Short-term meditation induces white matter changes in the anterior cingulate. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15649–15652.CrossRefGoogle Scholar
- Tang, Y.-Y., Lu, Q., Fan, M., Yang, Y., & Posner, M. I. (2012a). Mechanisms of white matter changes induced by meditation. Proceedings of the National Academy of Sciences of the United States of America, 109(26), 10570–10574.CrossRefGoogle Scholar
- Tang, Y. Y., Yang, L., Leve, L. D., & Harold, G. T. (2012b). Improving executive function and its neurobiological mechanisms through a mindfulness-based intervention: advances within the field of developmental neuroscience. Child Development Perspectives, 6(4), 361–366. https://doi.org/10.1111/j.1750-8606.2012.00250.x.CrossRefPubMedPubMedCentralGoogle Scholar
- Tang, Y.-Y., Hölzel, B. K., & Posner, M. I. (2015). The neuroscience of mindfulness meditation. Nature Reviews. Neuroscience, 16(4), 213–225. https://doi.org/10.1038/nrn3916.CrossRefPubMedGoogle Scholar
- Taylor, P. N., & Forsyth, R. (2016). Heterogeneity of trans-callosal structural connectivity and effects on resting state subnetwork integrity may underlie both wanted and unwanted effects of therapeutic corpus callostomy. NeuroImage: Clinical, 12, 341–347. https://doi.org/10.1016/j.nicl.2016.07.010.CrossRefGoogle Scholar
- van der Velden, A. M., & Roepstorff, A. (2015). Neural mechanisms of mindfulness meditation: bridging clinical and neuroscience investigations. Nature Reviews. Neuroscience, 16(7), 439–439.CrossRefGoogle Scholar
- Vigneau, M., Beaucousin, V., Herve, P.-Y., Duffau, H., Crivello, F., Houde, O., et al. (2006). Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage, 30(4), 1414–1432.CrossRefGoogle Scholar
- Wake, H., Lee, P. R., & Fields, R. D. (2011). Control of local protein synthesis and initial events in myelination by action potentials. Science, 333(6049), 1647–1651. https://doi.org/10.1126/science.1206998.CrossRefPubMedPubMedCentralGoogle Scholar
- Xiong, G. L., & Doraiswamy, P. M. (2009). Does meditation enhance cognition and brain plasticity? Annals of the New York Academy of Sciences, 1172(1), 63–69. https://doi.org/10.1196/annals.1393.002.CrossRefPubMedGoogle Scholar
- Yoon, Y. B., Yun, J. Y., Jung, W. H., Cho, K. I. K., Kim, S. N., Lee, T. Y., et al. (2015). Altered Fronto-temporal functional connectivity in individuals at ultra-high-risk of developing psychosis. PLoS One, 10(8), e0135347. https://doi.org/10.1371/journal.pone.0135347.CrossRefPubMedPubMedCentralGoogle Scholar
- Yoon, Y. B., Shin, W. G., Lee, T. Y., Hur, J. W., Cho, K. I. K., Sohn, W. S., et al. (2017). Brain structural networks associated with intelligence and visuomotor ability. Scientific Reports, 7(1), 2177. https://doi.org/10.1038/s41598-017-02304-z.CrossRefPubMedPubMedCentralGoogle Scholar
- Yoon, Y. B., Kim, M., Lee, J., Cho, K. I. K., Kwak, S., Lee, T. Y., & Kwon, J. S. (2019). Effect of tDCS on aberrant functional network connectivity in refractory hallucinatory schizophrenia: a pilot study. Psychiatry Investigation, 16(3), 244–248. https://doi.org/10.30773/pi.2018.11.18.CrossRefPubMedPubMedCentralGoogle Scholar
- Zarei, M., Johansen-Berg, H., Smith, S., Ciccarelli, O., Thompson, A. J., & Matthews, P. M. (2006). Functional anatomy of interhemispheric cortical connections in the human brain. Journal of Anatomy, 209(3), 311–320. https://doi.org/10.1111/j.1469-7580.2006.00615.x.CrossRefPubMedPubMedCentralGoogle Scholar
- Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nature Neuroscience, 15(4), 528–536.CrossRefGoogle Scholar