Advertisement

Terminalia belerica Mediated Green Synthesis of Nanoparticles of Copper, Iron and Zinc Metal Oxides as the Alternate Antibacterial Agents Against some Common Pathogens

  • Syed Md Humayun Akhter
  • Faiz MohammadEmail author
  • Shamim Ahmad
Article
  • 7 Downloads

Abstract

The present work aims at the green synthesis of metal oxides of zinc, iron, and copper using the aqueous extract of Terminalia belerica as a reductant and stabilizer. The entire reaction process was simple, cost-effective, and convenient to handle without use of any other stabilizing or reducing agents. The successful formation of the metal oxide nanoparticles was confirmed by UV-vis spectroscopy. For thus-prepared nanoparticles were characterized, a series of techniques were employed including Fourier-transform infrared spectroscopy, X-ray diffraction spectroscopy, high-resolution transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. We used these nanoparticles to demonstrate their antibacterial efficacy against some common standard bacterial pathogens including Staphylococcus aureus (ATCC-6538), Bacillus subtilis (MTCC-441), Escherichia coli (ATCC-8739), Klebsiella pneumoniae (ATCC-43816), and Salmonella enterica (MTCC-3858). The results indicate that these metal oxide nanoparticles may become a potential candidate for use in biological and pharmaceutical areas to fight against multi-drug resistant superbugs.

Keywords

Antibacterial efficacy Copper oxide nanoparticles Iron oxide nanoparticles Zinc oxide nanoparticles Terminalia belerica 

Notes

Acknowledgements

The author acknowledges one of the colleagues Mr. Vasiuddin Siddiqui (Jamia Millia Islamia) who provided insight and expertise that greatly assisted the research. The USIF of AMU for HRTEM and SEM is thankfully acknowledged.

Funding Information

This work received support from the UGC in the form of Maulana Azad National Fellowship for Minority Students.

References

  1. 1.
    Ozin, G. A., & Arsenault, A. (2015). Nanochemistry: a chemical approach to nanomaterials. London: Royal Society of Chemistry.Google Scholar
  2. 2.
    Cao, G. (2004). Nanostructures & nanomaterials: synthesis, properties & applications. London: Imperial college press.CrossRefGoogle Scholar
  3. 3.
    National Nanotechnology Initiative Leading to the Next Industrial Revolution, (2000). A Report by the Interagency working Group on Nanoscience, Engineering and Technology, Committee on Technology, National Science and Technology Council. Washington D.C.Google Scholar
  4. 4.
    Lewis, K., & Klibanov, A. M. (2005). Surpassing nature: rational design of sterilesurface materials. Trends in Biotechnology, 23, 343–348.CrossRefGoogle Scholar
  5. 5.
    Rosi, N. L., & Mirkin, C. A. (2005). Nanostructures in biodiagnostics. Chemical Reviews, 105, 1547–1562.CrossRefGoogle Scholar
  6. 6.
    Azam, A., Ahmed, A. S., Oves, M., Khan, M. S., & Memic, A. (2012). Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. International Journal of Nanomedicine, 7, 3527–3535.CrossRefGoogle Scholar
  7. 7.
    Raghupati, K. R., Koodali, R. T., & Manna, A. C. (2011). Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 27, 4020–4028.CrossRefGoogle Scholar
  8. 8.
    Daniel, S. K., Vinothini, G., Subramanian, N., Nehru, K., & Sivakumar, M. (2013). Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. Journal of Nanoparticle Research, 5, 1319.CrossRefGoogle Scholar
  9. 9.
    Mahapatra, O., Bhagat, M., Gopalakrishnan, C., & Arunachalam, K. D. (2008). Ultrafine dispersed CuO nanoparticles and their antibacterial activity. Journal of Experimental Nanoscience, 3, 185–193.CrossRefGoogle Scholar
  10. 10.
    Tran, N., Mir, A., Mallik, D., Sinha, A., Nayar, S., & Webster, T. J. (2010). Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. International Journal of Nanomedicine, 5, 277.Google Scholar
  11. 11.
    Igwe, O. U., & Nwamezie, F. (2018). Green synthesis of iron nanoparticles using flower extract of Piliostigma thonningii and antibacterial activity evaluation. Chemistry International 4 , 60–66.Google Scholar
  12. 12.
    Bibi, I., Kamal, S., Ahmed, A., Iqbal, M., Nouren, S., Jilani, K., & Majid, F. (2017). Nickel nanoparticle synthesis using Camellia Sinensis as reducing and capping agent: Growth mechanism and photo-catalytic activity evaluation. International Journal of Biological Macromolecules, 103, 783–790.CrossRefGoogle Scholar
  13. 13.
    Bibi, I., Nazar, N., Iqbal, M., Kamal, S., Nawaz, H., Nouren, S., et al. (2017). Green and eco-friendly synthesis of cobalt-oxide nanoparticle: characterization and photo-catalytic activity. Advanced Powder Technology, 28, 2035–2043.CrossRefGoogle Scholar
  14. 14.
    Nazar, N., Bibi, I., Kamal, S., Iqbal, M., Nouren, S., Jilani, K., et al. (2018). Cu nanoparticles synthesis using biological molecule of P. granatum seeds extract as reducing and capping agent: growth mechanism and photo-catalytic activity. International Journal of Biological Macromolecules, 106, 1203–1210.CrossRefGoogle Scholar
  15. 15.
    Akhter, S. M. H., Mohammad, F., & Ahmad, S. (2016). Plant mediated green synthesis of metal nanoparticles for applications in medicine. Journal of Nanotechnology in Diagnosis and Treatment, 4, 15–24.CrossRefGoogle Scholar
  16. 16.
    Akhter, S. M. H., & Mohammad, F. (2018). Antibacterial efficacy of metallic nanoparticles using plant biomass. Trends Technical Scientific Research, 2, 555579.Google Scholar
  17. 17.
    Jones, N., Ray, B., Ranjit, K. T., & Manna, A. C. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters, 279, 71–76.CrossRefGoogle Scholar
  18. 18.
    Akhter, S. M. H., Mahmood, Z., Ahmad, S., & Mohammad, F. (2017). Ultra-small copper oxide nanoparticles (ucuonps): Swertia chirayita mediated facile green synthesis, physicochemical characterization and antibacterial efficacy. Troindia.in 4, 11–20,Google Scholar
  19. 19.
    Akhter, S. M. H., Mahmood, Z., Ahmad, S., & Mohammad, F. (2018). Plant-mediated green synthesis of zinc oxide nanoparticles using Swertia chirayita leaf extract, characterization and its antibacterial efficacy against some common pathogenic bacteria. BioNanoScience, 8, 811–817.CrossRefGoogle Scholar
  20. 20.
    Deb, A., Barua, S., & Das, B. (2016). Pharmacological activities of Baheda (Terminalia bellerica): a review. Journal of pharmacognosy and phytochemistry, 5, 194.Google Scholar
  21. 21.
    Bala, N., Saha, S., Chakraborty, M., Maiti, M., Das, S., Basu, R., & Nandy, P. (2015). Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Advances, 5, 4993–5003.CrossRefGoogle Scholar
  22. 22.
    Mahdavi, M., Namvar, F., Ahmad, M. B., & Mohamad, R. (2013). Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 18, 5954–5964.CrossRefGoogle Scholar
  23. 23.
    Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2017). Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi journal of biological sciences, 24, 45–50.CrossRefGoogle Scholar
  24. 24.
    Azam, A., Ahmed, A. S., Oves, M., Khan, M. S., Habib, S. S., & Memic, A. (2012). Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. International Journal of Nanomedicine, 7, 6003.CrossRefGoogle Scholar
  25. 25.
    Cheirmadurai, K., Biswas, S., Murali, R., & Thanikaivelan, P. (2014). Green synthesis of copper nanoparticles and conducting nanobiocomposites using plant and animal sources. RSC Advances, 4, 19507–19511.CrossRefGoogle Scholar
  26. 26.
    Jagminas, A., Kuzmarskyt, J., & Niaura, G. (2002). Electrochemical formation and characterization of copper oxygenous compounds in alumina template from ethanolamine solutions. Applied Surface Science, 201, 129–137.CrossRefGoogle Scholar
  27. 27.
    Rajendran, S. P., & Sengodan, K. (2017). Synthesis and characterization of zinc oxide and iron oxide nanoparticles using Sesbania grandiflora leaf extract as reducing agent. Journal of Nanoscience, 2017.Google Scholar
  28. 28.
    Santhoshkumar, J., Kumar, S. V., & Rajeshkumar, S. (2017). Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 3, 459–465.CrossRefGoogle Scholar
  29. 29.
    Tippayawat, P., Phromviyo, N., Boueroy, P., & Chompoosor, A. (2016). Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ, 4, e2589.CrossRefGoogle Scholar
  30. 30.
    Herlekar, M., Barve, S., & Kumar, R. (2014). Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticles., 2014, 1–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Syed Md Humayun Akhter
    • 1
  • Faiz Mohammad
    • 1
    Email author
  • Shamim Ahmad
    • 2
  1. 1.Department of Applied ChemistryZakir Husain College of Engineering and TechnologyAligarhIndia
  2. 2.Institute of Ophthalmology (Jawaharlal Nehru Medical College)Aligarh Muslim UniversityAligarhIndia

Personalised recommendations