Advertisement

Fabrication of Cellulose Acetate/Polyaziridine Blended Flat Sheet Membranes for Dialysis Application

  • Hizba WaheedEmail author
  • Arshad Hussain
Article
  • 11 Downloads

Abstract

Polyaziridine or polyetyleneimine (PEI) was introduced as filler in cellulose acetate (CA) to fabricate mixed matrix membrane (MMM) for hemodialysis. Diffusion-induced phase separation (DIPS) method was followed for making PEI/CA MMM membranes. Effect of variation in the amount PEI was also examined on the morphology and performance of CA membrane. The surface morphology of pure and MMM membranes was studied by SEM, AFM, contact angle, and FTIR. Results of all characterization techniques revealed homogenous and significant blending of PEI content into pure CA matrix. Moreover, performance efficiency of MMM membranes was investigated in terms of pure water flux (PWF), urea clearance, and bovine serum albumin (BSA) rejection. The concomitant decrease of contact angle from 78° to 69° in PEI/CA MMM membranes of varying composition successfully demonstrates enhancement in surface hydrophilicity of MMM membranes. For protein rejection, all PEI/CA MMM membranes rejected > 90% of BSA relative to 25% for pure CA membrane. Furthermore, urea clearance behavior for PEI/CA MMM membranes was 67.6% in comparison to 52% for pure CA membrane. The incorporation PEI appreciably enhanced the PWF, BSA rejection, and urea clearance of CA membrane for hemodialysis application.

Keywords

Cellulose acetate Polyaziridine or polyetyleneimine Biomedical application Hemodialysis BSA rejection Urea clearance 

Notes

Acknowledgements

This work was supported by School of Chemical and Materials Engineering, National University of Science and Technology, Islamabad, Pakistan and Chemical Engineering Department of University of Waterloo, Ontario, Canada.

References

  1. 1.
    Sajitha, C. J., & Mohan, D. (2005). Studies on cellulose acetate-carboxylated polysulfone blend ultrafiltration membranes. III. Journal of Applied Polymer Science, 97, 976–988.CrossRefGoogle Scholar
  2. 2.
    Aliane, A., Bounatiro, N., Cherif, A. T., & Akretche, D. E. (2001). Removal of chromium from aqueous solution by complexation ultrafiltration using awater-soluble macroligand. Water Research, 35, 2320–2326.CrossRefGoogle Scholar
  3. 3.
    Arthanareeswaran, G., Thanikaivelan, P., Srinivasn, K., & Mohan, D. (2004). Synthesis, characterization and thermal studies on cellulose acetate membranes with additive. European Polymer Journal, 40, 2153–2159.CrossRefGoogle Scholar
  4. 4.
    Ma, H., Bowman, C. N., & Davis, R. H. (2000). Membrane fouling reduction by back-pulsing and surface modification. Journal of Membrane Science, 173, 191–200.CrossRefGoogle Scholar
  5. 5.
    Teatini, U., Liebchen, A., Nilsson, L. G., Beck, W., & Romei Longhena, G. (2016). Effect of a more permeable dialysis membrane on ESA resistance in hemodialysis patients- a pilot investigation. Blood Purification, 41, 80–86.CrossRefGoogle Scholar
  6. 6.
    Arindam, B., & Himadri, C. (2014). Assesment of rheological models for prediction of transport phenomena in stenosed artery. PCFD, 14, 6.zbMATHGoogle Scholar
  7. 7.
    Bit, A., & Chattopadhyay, H. (2014). Numerical investigation of pulsatile flow in stenosed artery. Acta of Bioengineering and Biomechanics, 16, 33–44.Google Scholar
  8. 8.
    Gijsen, F. J. H., Van de Vosse, F. N., & Jansen, J. D. (1999). The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model. Journal of Biomechanics, 32, 601–608.CrossRefGoogle Scholar
  9. 9.
    Feng, W., Zhu, S., Ishihara, K., & Brash, J. L. (2005). Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Langmuir, 21, 5980–5987.CrossRefGoogle Scholar
  10. 10.
    Hayama, M., Yamamoto, K., Kohori, K., & Sakai, K. (2004). How polysulfone dialysis membranes containing polyvinylpyrrolidone achieve excellent biocompatibility? Journal of Membrane Science, 234, 41–49.CrossRefGoogle Scholar
  11. 11.
    Dunweg, G., Lother, S., & Wolfgang, A. (1995). Dialysis membrane made of cellulose acetate. US Patent, 5, 403,485.Google Scholar
  12. 12.
    Ferjani, E., Lajimi, R. H., & Deratani, A. (2002). Bulk and surface modification of cellulose diacetate based RO/NF membranes by polymethylhydrosiloxane preparation and characterization. Desalination, 146, 325–330.CrossRefGoogle Scholar
  13. 13.
    Qin, J. J., Oo, M. H., Cao, Y. M., & Lee, L. S. (2005). Development of a LCST membrane forming system for cellulose acetate ultrafiltration hollowfiber. Separation and Purification Technology, 42, 291–295.CrossRefGoogle Scholar
  14. 14.
    Qin, J. J., Li, Y., Lee, L. S., & Lee, H. (2003). Cellulose acetate hollow fiber ultrafiltration membranes made from CA/PVP 360 K/NMP/water. Journal of Membrane Science, 218, 173–183.CrossRefGoogle Scholar
  15. 15.
    Nowak, K. M., Kowalska, I., & Korbutowicz, M. K. (2005). Ultrafiltration of SDS solutions using polymeric membranes. Desalination, 184, 415–422.CrossRefGoogle Scholar
  16. 16.
    Zularisam, A. W., Ismaila, A. F., Salimc, M. R., Sakinaha, M., & Ozakid, H. (2007). The effects of natural organic matter (NOM) fractions on fouling characteristics and flux recovery of ultrafiltration membranes. Desalination, 212, 191–208.CrossRefGoogle Scholar
  17. 17.
    Ramírez, J. L. B., Oviedo, M. D. C., & Alonso, J. M. Q. (2006). Comparative studies of reverse osmosis membranes for wastewater reclamation. Desalination, 191, 137–147.CrossRefGoogle Scholar
  18. 18.
    Boricha, A. G., & Murthy, Z. V. P. (2010). Preparation of N, O-carboxymethyl chitosan/cellulose acetate blend nanofiltration membrane and testing its performance in treating industrial wastewater. Chemical Engineering Journal, 157, 393–400.CrossRefGoogle Scholar
  19. 19.
    Arockiasamy, D. L., Nagendran, A., Shobana, K. H., & Mohan, D. (2009). Preparation and characterization of cellulose acetate/aminated polysulfone blend ultrafiltration membranes and their application studies. Separation Science and Technology, 44, 398–421.CrossRefGoogle Scholar
  20. 20.
    Brousse, C. L., Chapurlat, R., & Quentin, J. P. (1976). New membranes for reverse osmosis. I. Characteristics of the base polymer: sulphonated polysulphones. Desalination, 18, 137–153.CrossRefGoogle Scholar
  21. 21.
    Brown, W., Henley, D., & Ohman, J. (1963). Studies on cellulose derivatives part I. The dimensions and configuration of sodium carboxymethyl cellulose in cadoxen and the influence of the degree of substitution. Die Makromolekulare Chemie. Rapid Communications, 62, 164–182.CrossRefGoogle Scholar
  22. 22.
    Cerqueira, D. A., Valente, A. J. M., Filho, G. R., & Burrows, H. D. (2009). Synthesis and properties of polyaniline-cellulose acetate blends: The use of sugarcane bagasse waste and the effect of the substitution degree. Carbohydrate Polymers, 78, 402–408.CrossRefGoogle Scholar
  23. 23.
    Vijayalakshmi, A., Arockiasamy, D. L., Nagendran, A., & Mohan, D. (2008). Separation of proteins and toxic heavy metal ions from aqueous solution by CA/PC blend ultrafiltration membranes. Separation and Purification Technology, 62, 32–38.CrossRefGoogle Scholar
  24. 24.
    Rajesh, S., Maheswari, P., Senthilkμmar, S., Jayalakshmi, A., & Mohan, D. (2011). Preparation and characterisation of poly (amide-imide) incorporated cellulose acetate membranes for polymer enhanced ultrafiltration of metal ions. Chemical Engineering Journal, 171, 33–44.CrossRefGoogle Scholar
  25. 25.
    Sivakμmar, M., Mohansundaram, A. K., Mohan, D., Balu, K., & Rangarajan, R. (1998). Modification of CA: Its characterization and application as an UF membranes. Journal of Applied Polymer Science, 67, 1939–1946.CrossRefGoogle Scholar
  26. 26.
    Tatiana, K. Bronich. Nanomedicine: Nanotechnology, Biology and Medicine. Journal Elsevier. 12(8).Google Scholar
  27. 27.
    Hou, J. Z., Xue, H. L., Li, L. L., Dou, Y. L., Wu, Z. N., & Zhang, P. P. (2016). Fabrication and morphology study of electrospun cellulose acetate/polyethylenimine nanofiber. Polymer Bulletin, 73, 2889–2906.CrossRefGoogle Scholar
  28. 28.
    Velu, S., Muruganandam, L., & Arthanareeswaran, G. (2015). Preparation and performance studies on, polyethersulfone ultrafiltration membranes modified with gelatin for treatment of tannery and distillery waste water. Brazilian Journal of Chemistry, 32, 179–189.CrossRefGoogle Scholar
  29. 29.
    Kee, C. M., & Idris, A. (2010). Permeability performance of different molecular weight cellulose acetate hemodialysis membrane. Separation and Purification Technology, 75, 102–113.CrossRefGoogle Scholar
  30. 30.
    Guan, R., Zou, H., Lu, D., Gong, C., & Liu, Y. (2005). Polyethersulfone sulfonated by chlorosulfonic acid and its membrane characteristics. European Polymer Journal, 41, 1554–1560.CrossRefGoogle Scholar
  31. 31.
    Xu, Z. K., Nie, F. Q., Qu, C., Wan, L. S., Wu, J., & Yao, K. (2005). Tethering poly (ethylene glycol) s to improve the surface biocompatibility of poly (acrylonitrile-co-maleic acid) asymmetric membranes. Biomaterials, 26, 589–598.CrossRefGoogle Scholar
  32. 32.
    Chen, Z., Deng, M., Chen, Y., He, G., Wu, M., & Wang, J. (2004). Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications. Journal of Membrane Science, 235, 73–86.CrossRefGoogle Scholar
  33. 33.
    Jia, Z., & Tian, C. (2009). Quantitative determination of polyethylene glycol with modified Dragendorff reagent method. Desalination, 247, 423–429.CrossRefGoogle Scholar
  34. 34.
    Senthilkumar, S., Rajesh, S., Mohan, D., & Soundararajan, P. (2013). Preparation, characterization, and performance evaluation of poly(ether-imide) incorporated cellulose acetate ultrafiltration membrane for hemodialysis. Separation Science and Technology, 48, 66–75.CrossRefGoogle Scholar
  35. 35.
    Joanna, R., Yurij, S., Kamil, A., Joanna, Z., Andrij, K., Khrystyna, H., Mateusz, M., Anderzej, B., Ostap, L., Halyna, O., & Andrzej, B. (2016). Temperature responsive properties of poly (4-vinylpyridine) coating: Influence of temperature on the wettability, morphology, and protein adsorption. RSC Advance, 90.Google Scholar
  36. 36.
    Velu, S., Muruganandam, L., & Arthanareeswaran, G. (2015). Preperation and performance studies on polyethersulfone ultrafiltration membranesmodified with gelatin for treatmentof tannery and distillery wastewater. Brazilian Journal of Chemical Engineering, 32, 179–189.CrossRefGoogle Scholar
  37. 37.
    Idris, A., Yee, H. K., & Kee, C. M. (2009). Preparation of cellulose acetate dialysis membrane using D-glucose monohydrate as additive. Jurnal Teknologi, 51(F), Dis: 67–76.Google Scholar
  38. 38.
    Farrukh, S., Minhas, F. T., Hussain, A., Memon, S., Bhanger, M. I., & Mujahid, M. (2014). Preparation, characterization, and applicability of novel calix[4]arene-based cellulose acetate membranes in gas permeation. Journal of Applied Polymer Science, 131, 39985.CrossRefGoogle Scholar
  39. 39.
    Idris, A., Lee, K. Y., Noordin, M., & Chan, M. K. (2008). Response surface methodology approach to study the influence of PEG and water in cellulose acetate dialysis membranes. Jurnal Teknologi, 49F, 39–49.Google Scholar
  40. 40.
    Iwasaki, Y., Yamato, H., Nii-Kono, T., Fujieda, A., Uchida, M., Hosokawa, A., Motojima, M., & Fukagawa, M. (2006). Insufficiency of PTH action on bone in uremia. Journal of Bone and Mineral Metabolism, 24, 172–175.CrossRefGoogle Scholar
  41. 41.
    Sakai, K. (1994). Determination of pore size and pore distribution: 2. Dialysis membranes. Journal of Membrane Science, 96, 91–130.CrossRefGoogle Scholar
  42. 42.
    Lesaffer, G., Smet, R. D., Lameire, N., Dhondt, A., Duym, P., & Vanholder, P. (2000). Intradialytic removal of protein-bound uraemic toxins: Role of solute characteristics and of dialyser membrane. Nephrology, Dialysis, Transplantation, 15, 50–57.CrossRefGoogle Scholar
  43. 43.
    Vanholder, R. C., Smet, R. V. D., & Ringoir, S. (1992). Assessment of urea and other uremic markers for quantification of dialysis efficacy. Clinical Chemistry, 38, 1429–1436.Google Scholar
  44. 44.
    Eknoyan, G., Beck, G. J., Cheung, A. K., Daugirdas, J. T., Greene, T., Kusek, J. W., Allon, M., Bailey, J., Delmez, J. A., & Depner, T. A. (2002). Effect of Dialysis dose and membrane flux in maintenance hemodialysis. The New England Journal of Medicine, 347, 2010–2019.CrossRefGoogle Scholar
  45. 45.
    Irfan, M., Idris, A., Yusof, N. M., Khairuddin, N. F. M., & Akhmal, H. (2014). Surface modification and performance enhancement of nano-hybrid f-MWCNT/PVP90/PES hemodialysis membranes. Journal of Membrane Science, 467, 73–84.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical and Materials Engineering (SCME)National University of Sciences and TechnologyIslamabadPakistan

Personalised recommendations