Selenium Nanoparticles Attenuate Gentamycin-Induced Nephrotoxicity and Hematotoxicity in Female Swiss Albino Mice

  • Faouzi DahdouhEmail author
  • Hacene Bendjeffal
  • Zakaria Nouacer
  • Walid Moumene
  • Mohamed El-Hadi Zeminour
  • Mohamed Naous
  • Houria Djebar


Gentamycin (GM) is a widely used antibiotic for the treatment of Gram-negative bacterial infections, but nephrotoxic effects limit its use. Selenium nanoparticles (SeNPs) have attracted worldwide research interest due to their high bioavailability and potential antioxidant property. This study was, therefore, designed to examine the protective effect of SeNPs on GM-induced changes in body and kidney weights, blood hematology, serum biochemistry parameters, and renal tissue markers of oxidative stress in female mice. GM was administered intraperitoneally (100 mg/kgb.w) and SeNPs were given by oral gavage (2 mg/kg b.w) for 10 consecutive days. GM treatment caused significant changes in the body and relative kidney weights and significant renal damage, evidenced by increased serum levels of urea, uric acid, creatinine, total proteins, and blood urea nitrogen (BUN), along with noteworthy histopathological alterations. A marked decrease in serum sodium and potassium ions, and kidney tissue antioxidative defense system (reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT)) was observed in GM-treated mice when compared with the normal mice. Furthermore, significant decrease in total white blood corpuscles (WBC) count, total platelets count (PLT), total red blood corpuscles (RBC) count, hemoglobin concentration (Hgb), and packed cell volume (PCV) was also revealed in GM-treated group. However, GM + SeNPs group had effectively reversed GM-induced alteration of both biochemical and renal histological structures. Our results suggested for the first time that SeNPs are potent antioxidant candidate against GM-induced oxidative kidney toxicity and hematoxicity in mice.


Gentamycin Hematotoxicity Mice Renal toxicity Histopathology Selenium nanoparticles 



The authors express their appreciation to Dr. Azzouz Zoubir and Dr. Tichiti Lazhari of Annaba University for the valuable assistance.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All experimental procedures were approved by the Animal Care Committee and Ethics Committee of our institution (AFRO. No 478, 2009).


  1. 1.
    Denamur, S., Tyteca, D., Marchand-Brynaert, J., Van Bambeke, F., Tulkens, P. M., Courtoy, P. J., & Mingeot-Leclercq, M. P. (2013). Role of oxidative stress in lysosomal membrane permeabilization and apoptosis induced by gentamicin, an aminoglycoside antibiotic. Free Radical Biology and Medicine, 51(9), 1656–1665.CrossRefGoogle Scholar
  2. 2.
    Aly, H. A. A., & Hassan, M. H. (2018). Potential testicular toxicity of gentamicin in adult rats. Biochemical and Biophysical Research Communications, 497(1), 362–367.CrossRefGoogle Scholar
  3. 3.
    Ademiluyi, A. O., Oboh, G., Owoloye, T. R., & Agbebi, O. J. (2013). Modulatory effects of dietary inclusion of garlic (Allium sativum) on gentamycin-induced hepatotoxicity and oxidative stress in rats. Asian Pacific Journal of Tropical Biomedicine, 3(6), 470–475.CrossRefGoogle Scholar
  4. 4.
    Alarifi, S., Al-Doaiss, A., Alkahtani, S., Al-Farraj, S., Al-Eissa, M., Al-Dahmash, B., Al-Yahya, H., & Mubarak, M. (2012). Blood chemical changes and renal histological alterations induced by gentamicin in rats. Saudi Journal Biological Science, 19, 103–110.CrossRefGoogle Scholar
  5. 5.
    Dinev, T., Zapryanova, D., & Lashev, L. (2007). Changes in some blood biochemical and haematological parameters in goats after aminoglycoside and aminocyclitol treatment at therapeutic doses. Turkish Journal of Veterinary and Animal Sciences, 31(3), 179–188.Google Scholar
  6. 6.
    Abdel-Gayoum, A. A., Ali, B. H., Ghawarsha, K., & Bashir, A. A. (1993). Plasma lipid profile in rats with gentamicin -induced nephrotoxicity. Human & Experimental Toxicology, 12(5), 371–375.CrossRefGoogle Scholar
  7. 7.
    Ma, Y. R., Luo, X., Wu, Y. F., Zhang, T., Zhang, F., Zhang, G. Q., & Wu, X. A. (2018). Alteration of renal excretion pathways in gentamicin-induced renal injury in rats. Journal of Applied Toxicology, 38(7), 968–977.CrossRefGoogle Scholar
  8. 8.
    Kandeel, M., Abdelaziz, I., Elhabashy, N., & Hegazy, H. (2011). Nephrotoxicity and oxidative stress of single large dose or two divided doses of gentamicin in rats. Pakistan Journal of Biological Sciences, 14, 627–633.CrossRefGoogle Scholar
  9. 9.
    Cuzzocrea, S., Mazzon, E., Dugo, L., Serraino, I., Di Paola, R., Britti, D., De Sarro, A., Pierpaoli, S., Caputi, A., Masini, E., & Salvemini, D. (2002). A role for superoxide in gentamicin-mediated nephropathy in rats. European Journal of Pharmacology, 450(1), 67–76.CrossRefGoogle Scholar
  10. 10.
    Nakajima, T., Hishida, A., & Kato, A. (1994). Mechanisms for protective effects of free radical scavengers on gentamicin-mediated nephropathy in rats. The American Journal of Physiology, 266(3 Pt 2), F425–F431.Google Scholar
  11. 11.
    Ali, B. H., Al-Salam, S., Al-Husseini, I., & Nemmar, A. (2009). Comparative protective effect of N-acetyl cysteine and tetramethylpyrazine in rats with gentamicin nephrotoxicity. Journal of Applied Toxicology, 29(4), 302–307.CrossRefGoogle Scholar
  12. 12.
    Bayomy, N. A., Elbakary, R. H., Ibrahim, M. A. A., & Abdelaziz, E. Z. (2017). Effect of Lycopene and Rosmarinic acid on gentamicin induced renal cortical oxidative stress, apoptosis, and autophagy in adult male albino rat. Anatomical Record(Hoboken), 300(6), 1137–1149.CrossRefGoogle Scholar
  13. 13.
    Srivastava, D., Subramanian, R. B., Madamwar, D., & Flora, S. J. (2010). Protective effects of selenium, calcium, and magnesium against arsenic-induced oxidative stress in male rats. Arhiv za Higijenu Rada i Toksikologiju, 61(2), 153.CrossRefGoogle Scholar
  14. 14.
    Randjelovic, P., Veljkovic, S., Stojiljkovic, N., Velickovic, L., Sokolovic, D., Stoiljkovic, M., & Ilic, I. (2012). Protective effect of selenium on gentamicin-induced oxidative stress and nephrotoxicity in rats. Drug and Chemical Toxicology, 35(2), 141–148.CrossRefGoogle Scholar
  15. 15.
    Rotruck, J., Pope, A., Ganther, H., Swanson, A., Hateman, D., & Hoekstra, W. G. (1973). Selenium biochemical role as a component of glutathione peroxidase. Science, 179, 58–90.CrossRefGoogle Scholar
  16. 16.
    Kotelevets, L., Chastre, E., Desmaële, D., & Couvreur, P. (2016). Nanotechnologies for the treatment of colon cancer: from old drugs to new hope. International Journal of Pharmaceutics, 514(1), 24–40.CrossRefGoogle Scholar
  17. 17.
    Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Potential of materials at the nanolevel. Sci, 311(5761), 622–627.CrossRefGoogle Scholar
  18. 18.
    Wang, H., Zhang, J., & Yu, H. (2007). Selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radical Biology & Medicine, 42(10), 1524–1533.CrossRefGoogle Scholar
  19. 19.
    Zhang, J., Wang, H., Yan, X., & Zhang, L. (2005). Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sciences, 76, 1099–1109.CrossRefGoogle Scholar
  20. 20.
    Hassanin, K. M., Abd El-Kawi, S. H., & Hassan, K. (2013). The prospective protective effect of selenium nanoparticles against chromium-induced oxidative and cellular damage in rat thyroid. International Journal of Nanomedicine, 8, 1713–1720.Google Scholar
  21. 21.
    Wang, X., Sun, K., Tan, Y. P., Wu, S. S., & Zhenge, J. S. (2014). Efficacy and safety of selenium nanoparticles administered intraperitoneally for the prevention of growth of cancer cells in the peritoneal cavity. Free Radical Biology and Medicine, 72, 1–10.CrossRefGoogle Scholar
  22. 22.
    Shoeibi, S., & Mashreghi, M. (2017). Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. Journal of Trace Elements in Medicine and Biology, 39, 135–139.CrossRefGoogle Scholar
  23. 23.
    Li, Y., Lin, Z., Guo, M., Xia, Y., Zhao, M., Wang, C., Xu, T., Chen, T., & Zhu, B. (2017). Inhibitory activity of selenium nanoparticles functionalized with oseltamivir on H1N1 influenza virus. International Journal of Nanomedicine, 9(12), 5733–5743.CrossRefGoogle Scholar
  24. 24.
    Zheng, S. Y., Li, X. L., Zhang, Y. B., Xie, Q., Wong, Y. S., Zheng, W. J., & Chen, T. F. (2012). PEG-nano sized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction. International Journal of Nanomedicine, 7, 3939–3949.Google Scholar
  25. 25.
    El-Ghazaly, M. A., Fadel, N., Rashed, E., El-Batal, A., & Kenawy, S. A. (2017). Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Canadian Journal of Physiology and Pharmacology, 95(2), 101–110.CrossRefGoogle Scholar
  26. 26.
    Amin, K. A., Hashem, K. S., Alshehri, F. S., Awad, S. T., & Hassan, M. S. (2013). Antioxidant and hepatoprotective efficiency of selenium nanoparticles against acetaminophen-induced hepatic damage. Biological Trace Element Research, 175(1), 136–145. Scholar
  27. 27.
    Shirsat, S., Kadam, A., Mane, R. S., Jadhav, V. V., Zate, M. K., & K, N. (2016). Protective role of biogenic selenium nanoparticles in immunological and oxidative stress generated by enrofloxacin in boiler chicken. Dalton Transactions, 45(21), 8845–8853.CrossRefGoogle Scholar
  28. 28.
    Kalishwaralal, K., Jeyabharathi, S., Sundar, K., & A, M. (2015). Sodium selenite/selenium nanoparticles (SeNPs) protect cardiomyoblasts and zebrafish embryos against ethanol induced oxidative stress. Journal of Trace Elements in Medicine and Biology, 32, 135–144.CrossRefGoogle Scholar
  29. 29.
    Sadek, K. M., Lebda, M. A., Abouzed, T. K., Nasr, S. M., & Shoukry, M. (2017). Neuro- and nephrotoxicity of subchronic cadmium chloride exposure and the potential chemoprotective effects of selenium nanoparticles. Metabolic Brain Disease, 32(5), 1659–1673.CrossRefGoogle Scholar
  30. 30.
    Dehkordi, A. J., Mohebbi, A. N., Aslani, M. R., & Ghoreyshi, S. M. (2017). Evaluation of nanoselenium (Nano-Se) effect on hematological and serum biochemical parameters of rat in experimentally lead poisoning. Human and Experimental Toxicology, 36(4), 421–427.CrossRefGoogle Scholar
  31. 31.
    Ngaha, E. O., Ogunleye, I. O., & Madusolumuo, M. A. (1984). Protection by selenium against gentamicin-induced acute renal damage in the rat. Journal of Biochemistry, 95(3), 831–837.CrossRefGoogle Scholar
  32. 32.
    Ademuyiwa, O., Ngaha, E. O., & F, U. (1990). Vitamin E and selenium in gentamicin nephrotoxicity. Human & Experimental Toxicology, 19(5), 281–288.CrossRefGoogle Scholar
  33. 33.
    Ingole, A. R., Thakare, S. R., Khati, N. T., & Wankhade, A. V. (2010). Green synthesis of selenium nanoparticles under ambient condition. Chalcogenide Letters, 7(7), 485–489.Google Scholar
  34. 34.
    Li, S., Hang, L., & Ma, Y. (2016). FGF22 (2016) protects hearing function from gentamycin ototoxicity by maintaining ribbon synapse number. Hearing Research, 332, 39–45.CrossRefGoogle Scholar
  35. 35.
    Bhattacharjee, A., Basu, A., Ghosh, P., Biswas, J., & Bhattacharya, S. (2014). Protective effect of selenium nanoparticle against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice. Journal of Biomaterials Applications, 29(2), 303–317.CrossRefGoogle Scholar
  36. 36.
    Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.CrossRefGoogle Scholar
  37. 37.
    Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47, 389–394.CrossRefGoogle Scholar
  38. 38.
    Kakkar, P., Das, B., & Viswanathan, P. N. (1984). A modified spectroscopic assay of superoxide dismutase. Indian Journal of Biochemistry & Biophysics, 21, 130–132.Google Scholar
  39. 39.
    Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77.CrossRefGoogle Scholar
  40. 40.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  41. 41.
    Luna, L. G. (1968). Manual of histologic staining methods of the Armed Forces Institute of Pathology (3rd ed.). NY: McGraw-Hill.Google Scholar
  42. 42.
    Sahu, B. D., Tatireddy, S., Koneru, M., Borkar, R. M., Kumar, J. M., Kuncha, M., Srinivas, R., & ShyamSunder, R. (2014). Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: possible mechanism of nephroprotection. Toxicology and Applied Pharmacology, 277(1), 8–20.CrossRefGoogle Scholar
  43. 43.
    Mahmoud, Y. I. (2017). Kiwi fruit (Actinidiadeliciosa) ameliorates gentamicin-induced nephrotoxicity in albino mice via the activation of Nrf2 and the inhibition of NF-kB (Kiwi & gentamicin-induced nephrotoxicity). Biomedicine & Pharmacotherapy, 94, 206–218.CrossRefGoogle Scholar
  44. 44.
    Ozbek, E., Cekmen, M., Ilbey, Y. O., Simsek, A., & Polat, E. C. (2009). Atorvastatin prevents gentamicin-induced renal damage in rats through the inhibition of p38-MAPK and NF-kappaB pathways. Renal Failure, 31(5), 382–392.CrossRefGoogle Scholar
  45. 45.
    Başhan, İ., Başhan, P., Seçilmiş, M. A., & Şingirik, E. (2014). Protective effect of L-arginine on gentamicin-induced nephrotoxicity in rats. The Indian Journal of Pharmacy, 46(6), 608–612.CrossRefGoogle Scholar
  46. 46.
    Hajihashemi, S., Hamidizad, Z., Rahbari, A., Ghanbari, F., & Motealeghi, Z. A. (2017). Effects of cobalamin (Vitamin B12) on gentamicin induced nephrotoxicity in rat. Drug Research (Stuttg), 67(12), 710–718.CrossRefGoogle Scholar
  47. 47.
    Stojiljkovic, N., Veljkovic, S., Mihailovic, D., Stoiljkovic, M., Radovanovic, D., & Randelovic, P. (2008). The effect of calcium channel blocker verapamil on gentamycin nephrotoxicity in rats. Bosnian Journal of Basic Medical Sciences, 8(2), 170–176.CrossRefGoogle Scholar
  48. 48.
    Kim, Y. W. (2007). Antimicrobial-induced electrolyte and acid-base disturbances. Electrolyte & Blood, 5, 111–115.CrossRefGoogle Scholar
  49. 49.
    Chashmi, N. A., Emadi, S., & Khastar, H. (2017). Protective effects of hydroxytyrosol on gentamicin induced nephrotoxicity in mice. Biochemical and Biophysical Research Communications, 482(4), 1427–1429.CrossRefGoogle Scholar
  50. 50.
    Sodimbaku, V., Pujari, L., & Mullangi, R. (2016). Carrot (Daucuscarota L.): nephroprotective against gentamicin-induced nephrotoxicity in rats. The Indian Journal of Pharmacy, 48(2), 122–127.CrossRefGoogle Scholar
  51. 51.
    Veljković, M., Pavlović, D. R., Stojiljković, N., Ilić, S., Petrović, A., Jovanović, I., & Radenković, M. (2016). Morphological and morphometric study of protective effect of green tea in gentamicin-induced nephrotoxicity in rats. Life Science, 147, 85–91.CrossRefGoogle Scholar
  52. 52.
    Sha, S. H., & Schacht, J. (1999). Stimulation of free radical formation by aminoglycoside antibiotics. Hearing Research, 128, 112–118.CrossRefGoogle Scholar
  53. 53.
    Casanova, A. G., Vicente, L. V., Sánchez, M. T. H., Pescador, M., Prieto, M., Salgado, C. M., & Morales, A. I. (2017). Key role of oxidative stress in animal models of aminoglycoside nephrotoxicity revealed by a systematic analysis of the antioxidant-to-nephroprotective correlation. Toxicol, 385, 10–17.CrossRefGoogle Scholar
  54. 54.
    Priuska, E. M., & Schacht, J. (1995). Formation of free radicals by gentamycin and iron and evidence for an iron/ gentamycin complex. Biochemical Pharmacology, 50(11), 1749–1752.CrossRefGoogle Scholar
  55. 55.
    Lopez-Novoa, J. M., Quiros, Y., Vicente, L., Morales, A. I., & Lopez-Hernandez, F. J. (2011). New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney International, 79, 33–45.CrossRefGoogle Scholar
  56. 56.
    Kumar, N., Krishnani, K. K., & Singh, N. P. (2018). Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. Environmental Science and Pollution Research International, 25(9), 8914–8927.CrossRefGoogle Scholar
  57. 57.
    Dkhil, M. A., Zrieq, R., Al-Quraishy, S., & Abdel Moneim, A. E. (2016). Selenium nanoparticles attenuate oxidative stress and testicular damage in streptozotocin-induced diabetic rats. Molecules, 21, 1517.CrossRefGoogle Scholar
  58. 58.
    Nazıroğlu, M., Muhamad, S., & Pecze, L. (2017). Nanoparticles as potential clinical therapeutic agents in Alzheimer's disease: focus on selenium nanoparticles. Expert Review of Clinical Pharmacology, 10(7), 773–782.CrossRefGoogle Scholar
  59. 59.
    Peng, D., Zhang, J., Liu, Q., & Taylor, E. W. (2007). Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. Journal of Inorganic Biochemistry, 101, 1457–1463.CrossRefGoogle Scholar
  60. 60.
    Zhang, Y., Li, X., Huang, Z., Zheng, W., Fan, C., & Chen, T. (2013). Enhancement of cell permeabilization apoptosis-inducing activity of selenium nanoparticles by ATP surface decoration. Nanomedicine, 9, 74–84.CrossRefGoogle Scholar
  61. 61.
    Correa-salde, V., & Albesa, I. (2009). Reactive oxidant species and oxidation of protein and heamoglobin as biomarkers of susceptibility to stress caused by chloramphenicol. Biomedicine & Pharmacotherapy, 63, 100–104.CrossRefGoogle Scholar
  62. 62.
    Bustos, P. S., Deza-Ponzio, R., Páez, P. L., Albesa, I., Cabrera, J. L., & Virgolini, M. B. (2016). Protective effect of quercetin in gentamicin-induced oxidative stress in vitro and in vivo in blood cells. Effect on gentamicin antimicrobial activity. Environmental Toxicology and Pharmacology, 48, 253–264.CrossRefGoogle Scholar
  63. 63.
    Anandan, R., Subramanian, P. (2012). Renal protective effect of hesperidin on gentamicin-induced acute nephrotoxicity in male Wistar albino rats. Redox Report, 17(5), 219–26. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Faouzi Dahdouh
    • 1
    • 2
    Email author
  • Hacene Bendjeffal
    • 3
    • 4
  • Zakaria Nouacer
    • 1
  • Walid Moumene
    • 1
  • Mohamed El-Hadi Zeminour
    • 1
  • Mohamed Naous
    • 5
  • Houria Djebar
    • 1
  1. 1.Laboratory of Cell Toxicology, Department of BiologyBadji Mokhtar, Annaba UniversityAnnabaAlgeria
  2. 2.Department of Natural Sciences, Higher School of Professors for Technological EducationSkikdaAlgeria
  3. 3.Laboratory of water treatment and valorization of industrial wastes, Department of ChemistryBadji Mokhtar, Annaba UniversityAnnabaAlgeria
  4. 4.Department of Physics and Chemistry, Higher School of Professors for Technological EducationSkikdaAlgeria
  5. 5.Laboratory of Macromolecular Chemistry and PhysicsUniversity of Oran1 Ahmed BenbellaOranAlgeria

Personalised recommendations