Advertisement

Synergistic and Antagonistic Effects of Phenylalanine and Various Antibiotics on the Growth of Pathogenic Bacteria

  • Fatih SenEmail author
  • Mohamed Abdulhamid Ganim
  • Mehmet Cengiz BalogluEmail author
  • Aysenur Aygun
  • Hakan Sezgin Sayiner
  • Yasemin Celik Altunoglu
  • Fatma Kandemirli
  • Buse Demirkan
  • Esra Kuyuldar
  • Ela Bulut
Article
  • 20 Downloads

Abstract

Broad-spectrum antibiotics have been widely used in the treatment of many systemic and local infections in humans and animals. Herein, we aimed to determine the synergistic and antagonistic effects of phenylalanine with antibiotics cefoxitin, amoxicillin, vancomycin, lincomycin, and bacitracin against 14 pathogenic bacteria. The effect of antibiotics, either alone or in combination with this biomolecular liquid, was tested using the disk diffusion method against different bacteria. The addition of phenylalanine to antibiotic disks directly affected their antimicrobial activity. All the antibiotics used did not show any antimicrobial activity against Staphylococcus haemolyticus when used alone. However, in combination with phenylalanine, each antibiotic inhibited the growth of S. haemolyticus. The use of this biomolecular liquid together with amoxicillin and vancomycin also increased the antimicrobial activity against Enterococcus durans. The use of phenylalanine in combination with antibiotics also resulted in antagonistic effects on some pathogens. Further, the effects of antibiotics in combination with phenylalanine on different bacterial pathogens were investigated in vitro. Results provide valuable information to further our understanding of the molecular mechanism of action of antibiotics and to improve their efficacy against bacterial pathogens.

Keywords

Antagonistic-synergetic effect Pathogenic bacteria strains Phenylalanine 

Notes

Funding information

This study was supported by the Research Fund of Kastamonu University Grant No. KÜBAP-01/2016-40.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12668_2019_597_MOESM1_ESM.docx (29 kb)
Table S1 (DOCX 28 kb)

References

  1. 1.
    Hashemi, S., Nasrollah, A., & Rajabi, M. (2013). Irrational antibiotic prescribing: a local issue or global concern? EXCLI Journal, 12, 384–395.Google Scholar
  2. 2.
    Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K., Wertheim, H. F., Sumpradit, N., et al. (2013). Antibiotic resistance-the need for global solutions. The Lancet Infectious Diseases, 13(12), 1057–1098.CrossRefGoogle Scholar
  3. 3.
    Walsh, C. T., & Wencewicz, T. A. (2014). Prospects for new antibiotics: a molecule-centered perspective. The Journal of Antibiotics, 67(1), 7–22.CrossRefGoogle Scholar
  4. 4.
    Özkan, O. E., Zengin, G., Akça, M., Baloğlu, M. C., Olgun, Ç., Altuner, E. M., et al. (2015). DNA protection, antioxidant, antibacterial and enzyme inhibition activities of heartwood and sapwood extract from juniper and olive woods. RSC Advances, 5(89), 72950–72958.CrossRefGoogle Scholar
  5. 5.
    Gangoue-Pieboji, J., Koulla-Shiro, S., Ngassam, P., Adiogo, D., & Ndumbe, P. (2006). Antimicrobial activity against gram-negative bacilli from Yaounde Central Hospital, Cameroon. African Health Sciences, 6(4), 232–235.Google Scholar
  6. 6.
    Konai, M. M., Adhikary, U., Samaddar, S., Ghosh, C., & Haldar, J. (2015). Structure-activity relationship of amino acid tunable lipidated norspermidine conjugates: disrupting biofilms with potent activity against bacterial persisters. Bioconjugate Chemistry, 26(12), 2442–2453.CrossRefGoogle Scholar
  7. 7.
    Peng, B., Su, Y. B., Li, H., Han, Y., Guo, C., Tian, Y. M., & Peng, X. X. (2015). Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metabolism, 21(2), 249–261.CrossRefGoogle Scholar
  8. 8.
    Aiyelabola, T. O., Isaac, O., & Olugbenga, A. (2012). Structural and antimicrobial studies of coordination compounds of phenylalanine and glycine. International Journal of Chemistry, 4(20), 49.Google Scholar
  9. 9.
    Andrews, J. M. (2005). BSAC standardized disc susceptibility testing method (version 4). The Journal of Antimicrobial Chemotherapy, 56(1), 60–76.CrossRefGoogle Scholar
  10. 10.
    Luzzaro, F., Perilli, M., Amicosante, G., Lombardi, G., Belloni, R., Zollo, A., Bianchi, C., & Toniolo, A. (2001). Properties of multidrug-resistant, ESBL-producing Proteus mirabilis isolates and possible role of beta-lactam/beta-lactamase inhibitor combinations. International Journal of Antimicrobial Agents, 17(2), 131–135.CrossRefGoogle Scholar
  11. 11.
    Cauwelier, B., Gordts, B., Descheemaecker, P., & Van Landuyt, H. (2004). Evaluation of a disk diffusion method with cefoxitin (30 μg) for detection of methicillin-resistant Staphylococcus aureus. European Journal of Clinical Microbiology & Infectious Diseases, 23(5), 389–392.CrossRefGoogle Scholar
  12. 12.
    Bard, J. D., Hindler, J. A., Gold, H. S., & Limbago, B. (2014). Rationale for eliminating Staphylococcus breakpoints for β-lactam agents other than penicillin, oxacillin or cefoxitin, and ceftaroline. Clinical Infectious Diseases, 58(9), 1287–1296.CrossRefGoogle Scholar
  13. 13.
    Cockerill, F. R., Patel, J. B., Alder, J., Bradford, P. A., Dudley, M. N., & Eliopoulos, G. M. (2013). Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement. Clinical and Laboratory Standards Institue, 33(1), 56238–55866.Google Scholar
  14. 14.
    Ferro, B. E., Srivastava, S., Deshpande, D., Pasipanodya, J. G., van Soolingen, D., Mouton, J. W., van Ingen, J., & Gumbo, T. (2016). Failure of the amikacin, cefoxitin, and clarithromycin combination regimen for pulmonary Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 60(10), 6374–6376.CrossRefGoogle Scholar
  15. 15.
    Broekema, N. M., Van, T. T., Monson, T. A., Marshall, S. A., & Warshauer, D. M. (2009). Comparison of cefoxitin and oxacillin disk diffusion methods for detection of mecA-mediated resistance in Staphylococcus aureus in a large-scale study. Journal of Clinical Microbiology, 47(1), 217–219.CrossRefGoogle Scholar
  16. 16.
    Schwarz, S., Böttner, A., Goossens, L., Hafez, H. M., Hartmann, K., & Kaske, M. (2008). Erratum to a proposal of clinical breakpoints for amoxicillin applicable to porcine respiratory tract pathogens. Veterinary Microbiology, 126(1–3), 178–188.CrossRefGoogle Scholar
  17. 17.
    Sanchez-Quintero, M. J., Torres, M. J., Blazquez, A. B., Gómez, E., Fernandez, T. D., Doña, I., et al. (2013). Synergistic effect between amoxicillin and TLR ligands on dendritic cells from amoxicillin-delayed allergic patients. PLoS One, 8(9), 74198.CrossRefGoogle Scholar
  18. 18.
    Hai, J., Serradji, N., Mouton, L., Redeker, V., Cornu, D., El Hage Chahine, J. M., Verbeke, P., & Hémadi, M. (2016). Targeted delivery of amoxicillin to C. trachomatis by the transferrin Iron acquisition pathway. PLoS One, 11(2), 0150031.CrossRefGoogle Scholar
  19. 19.
    Bode, C., Muenster, S., Diedrich, B., Jahnert, S., Weisheit, C., Steinhagen, F., et al. (2015). Vancomycin, and daptomycin modulate cytokine production, Toll-like receptors, and phagocytosis in a human in vitro model of sepsis. Journal of Antibiotics (Tokyo), 68(8), 485–490.CrossRefGoogle Scholar
  20. 20.
    Davis, J. S., Sud, A., O'Sullivan, M. V. N., Robinson, J. O., Ferguson, P. E., Foo, H., van Hal, S. J., Ralph, A. P., Howden, B. P., Binks, P. M., Kirby, A., & Tong, S. Y. C. (2016). Combination of vancomycin and β-lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: a pilot multicenter randomized controlled trial. Clinical Infectious Diseases, 62(2), 173–180.CrossRefGoogle Scholar
  21. 21.
    Hazlewood, K. A., Brouse, S. D., Pitcher, W. D., & Hall, R. G. (2010). Vancomycin-associated nephrotoxicity: grave concern or death by character assassination? The American Journal of Medicine, 123, 182.e1–182.e7.CrossRefGoogle Scholar
  22. 22.
    Levine, D. P. (2006). Vancomycin: a history. Clinical Infectious Diseases, 42, 5–12.CrossRefGoogle Scholar
  23. 23.
    Jevons, M. P. (1961). “Celbenin-resistant” staphylococci. British Medical Journal, 1, 124–125.CrossRefGoogle Scholar
  24. 24.
    Downs, N. J., Neihart, R. E., Dolezal, J. M., & Hodges, G. R. (1989). Mild nephrotoxicity associated with vancomycin use. Archives of Internal Medicine, 149(8), 1777–1781.CrossRefGoogle Scholar
  25. 25.
    Hidayat, L. K., Hsu, D. I., Quist, R., Shriner, K. A., & Wong-Beringer, A. (2006). High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Archives of Internal Medicine, 166(19), 2138–2144.CrossRefGoogle Scholar
  26. 26.
    Lodise, T. P., Lomaestro, B., Graves, J., & Drusano, G. L. (2008). Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrobial Agents and Chemotherapy, 52(4), 1330–1336.CrossRefGoogle Scholar
  27. 27.
    Spizek, J., & Rezanka, T. (2004). Lincomycin, cultivation of producing strains and biosynthesis. Applied Microbiology and Biotechnology, 63(5), 510–519.CrossRefGoogle Scholar
  28. 28.
    Pomati, F., Orlandi, C., Clerici, M., Luciani, F., & Zuccato, E. (2008). Effects and interactions in an environmentally relevant mixture of pharmaceuticals. Toxicological Sciences, 102(1), 129–137.CrossRefGoogle Scholar
  29. 29.
    Matos, R., Pinto, V. V., Ruivo, M., & Lopes, M. F. (2009). Study on the dissemination of the bcr ABDR cluster in Enterococcus spp. reveals that the BcrAB transporter is sufficient to confer high-level bacitracin resistance. International Journal of Antimicrobial Agents, 34(2), 142–147.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sen Research Group, Department of Biochemistry, Faculty of Arts and ScienceDumlupınar UniversityKütahyaTurkey
  2. 2.Faculty of Engineering and Architecture, Department of Genetics and BioengineeringKastamonu UniversityKastamonuTurkey
  3. 3.Faculty of Medicine, Department of Infectious DiseasesAdiyaman UniversityAdiyamanTurkey
  4. 4.Faculty of Engineering and Architecture, Department of Biomedical EngineeringKastamonu UniversityKastamonuTurkey

Personalised recommendations