Advertisement

Green Synthesis of Iron Nanoparticles Using Plantago major Leaf Extract and Their Application as a Catalyst for the Decolorization of Azo Dye

  • Sajedeh Lohrasbi
  • Mohammad Amin Jadidi Kouhbanani
  • Nasrin Beheshtkhoo
  • Younes Ghasemi
  • Ali Mohammad AmaniEmail author
  • Saeed TaghizadehEmail author
Article
  • 23 Downloads

Abstract

Iron oxide nanoparticles (IONPs) have gained considerable attention due to their unique physicochemical properties especially in the environmental remediation practices. In the present study, IONPs were successfully synthesized using aqueous leaf extract of Plantago major as a simple and ecofriendly method to evaluate their efficient applicability as a dye removing nanomaterial. IONPs were characterized by transmission electron microscopy (TEM), particle size analysis (PSA), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer, vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). Synthesized nanoparticles were spherical in shape with diameters in the range of 4.6–30.6 nm. The methyl orange (MO) removal ability of green synthesized IONPs was studied. The MO concentration is conveniently monitored using ultraviolet-visible (UV-Vis) spectroscopy during treatment with iron-catalyzed H2O2. The results showed dye removal ability with 83.33% efficiency in a 6-h process in solution containing the IONPs with H2O2.

Keywords

Biosynthesis Iron oxide nanoparticles Dye removal Decolorization 

Notes

Funding Information

This work was financially supported by School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.

References

  1. 1.
    Beheshtkhoo, N., Kouhbanani, M. A. J., Savardashtaki, A., Amani, A. M., Taghizadeh, S. J. A. P. A. (2018). Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Applied Physics A, 124, 363.Google Scholar
  2. 2.
    Breneman, J., Blasinski, H., Farrell, J. E. (2014). The color of water: using underwater photography to estimate water quality. In: Digital Photography X, International Society for Optics and Photonics, p 90230R.Google Scholar
  3. 3.
    Brüschweiler, B. J., & Merlot, C. (2017). Azo dyes in clothing textiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet. Regulatory Toxicology and Pharmacology, 88, 214–226.CrossRefGoogle Scholar
  4. 4.
    Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017). Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Research Letters, 12, 143.CrossRefGoogle Scholar
  5. 5.
    Chequer, F. M. D., Lizier, T. M., de Felício, R., Zanoni, M. V. B., Debonsi, H. M., Lopes, N. P., & de Oliveira, D. P. (2015). The azo dye Disperse Red 13 and its oxidation and reduction products showed mutagenic potential. Toxicology In Vitro, 29, 1906–1915.CrossRefGoogle Scholar
  6. 6.
    Cuervo, L. E., Gomes, M. F., Da Silva, C. V., de Freitas, A. M., & Tiburtius, E. (2017). Degradation and ecotoxicity of dye Reactive Black 5 after reductive-oxidative process: Environmental Science and Pollution Research. Environmental Science and Pollution Research International, 24, 6126–6134.CrossRefGoogle Scholar
  7. 7.
    Dobson, J. (2006). Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Therapy, 13, 283.CrossRefGoogle Scholar
  8. 8.
    Ebrahiminezhad, A., Taghizadeh, S., Berenjian, A., Heidaryan Naeini, F., & Ghasemi, Y. (2017). Green synthesis of silver nanoparticles capped with natural carbohydrates using ephedra intermedia. Nanoscience & Nanotechnology - Asia, 7, 104–112.CrossRefGoogle Scholar
  9. 9.
    Edison, T. N. J. I., Atchudan, R., Sethuraman, M. G., & Lee, Y. R. (2016). Reductive-degradation of carcinogenic azo dyes using Anacardium occidentale testa derived silver nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 162, 604–610.CrossRefGoogle Scholar
  10. 10.
    Ferreira, G. M. D., Ferreira, G. M. D., Hespanhol, M. C., de Paula Rezende, J., dos Santos Pires, A. C., Gurgel, L. V. A., da Silva, L. H. M. (2017). Adsorption of red azo dyes on multi-walled carbon nanotubes and activated carbon: a thermodynamic study. Colloids and Surfaces A: Physicochemical and Engineering Aspects.Google Scholar
  11. 11.
    Futko, S., Shulitskii, B., Labunov, V., & Ermolaeva, E. (2015). Simulation of the kinetics of growth of iron nanoparticles in the process of chemical vapor deposition of hydrocarbons with injection of ferrocene for the synthesis of carbon-nanotube arrays. Journal of Engineering Physics and Thermophysics, 88, 1432–1441.CrossRefGoogle Scholar
  12. 12.
    Ghasemian, E., & Palizban, Z. (2016). Comparisons of azo dye adsorptions onto activated carbon and silicon carbide nanoparticles loaded on activated carbon. International journal of Environmental Science and Technology, 13, 501–512.CrossRefGoogle Scholar
  13. 13.
    Gupta, V. K., Jain, R., Nayak, A., Agarwal, S., & Shrivastava, M. (2011). Removal of the hazardous dye—tartrazine by photodegradation on titanium dioxide surface. Materials Science and Engineering: C, 31, 1062–1067.CrossRefGoogle Scholar
  14. 14.
    Hu, Y., Jensen, J. O., Zhang, W., Cleemann, L. N., Xing, W., Bjerrum, N. J., & Li, Q. (2014). Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angewandte Chemie International Edition, 53, 3675–3679.CrossRefGoogle Scholar
  15. 15.
    Kayani, Z. N., Arshad, S., Riaz, S., & Naseem, S. (2014). Synthesis of iron oxide nanoparticles by sol–gel technique and their characterization. IEEE Transactions on Magnetics, 50, 1–4.Google Scholar
  16. 16.
    Keshavarzi, M., Davoodi, D., Pourseyedi, S., Taghizadeh, S. J. G. B. (2018). The effects of three types of alfalfa plants (Medicago sativa) on the biosynthesis of gold nanoparticles: an insight into phytomining. Gold Bulletin, 51, 99–110.Google Scholar
  17. 17.
    Khan, R., Banerjee, U. C. (2010) Decolorization of azo dyes by immobilized bacteria. in: H. Atacag Erkurt (Ed.) Biodegradation of Azo Dyes (pp. 73–84). Berlin, Heidelberg: Springer Berlin Heidelberg.Google Scholar
  18. 18.
    Khan, Z. U. H., Khan, A., Chen, Y., ullah Khan, A., Shah, N. S., Muhammad, N., Murtaza, B., Tahir, K., Khan, F. U., & Wan, P. (2017). Photo catalytic applications of gold nanoparticles synthesized by green route and electrochemical degradation of phenolic Azo dyes using AuNPs/GC as modified paste electrode. Journal of Alloys and Compounds, 725, 869–876.CrossRefGoogle Scholar
  19. 19.
    Kouhbanani, M. A. J., Beheshtkhoo, N., Amani, A. M., Taghizadeh, S., Beigi, V., Bazmandeh, A. Z., Khalaf, N. J. M. R. E. (2018). Green synthesis of iron oxide nanoparticles using Artemisia vulgaris leaf extract and their application as a heterogeneous Fenton-like catalyst for the degradation of methyl orange. Materials Research Express, 5, 115013.Google Scholar
  20. 20.
    Kumar, B., Smita, K., Cumbal, L., Debut, A., Galeas, S., & Guerrero, V. H. (2016). Phytosynthesis and photocatalytic activity of magnetite (Fe 3 O 4) nanoparticles using the Andean blackberry leaf. Materials Chemistry and Physics, 179, 310–315.CrossRefGoogle Scholar
  21. 21.
    Kusmierek, E., Mierczynski, P., Kedziora, A., Nowosielska, M., Maniukiewicz, W., Vorobyov, S., Vitkovskaya, R., & Maniecki, T. P. (2017). Photocatalytic degradation of an azo dye over novel monometallic copper catalysts supported on fibreglass. Catalysis Letters, 147, 2448–2461.CrossRefGoogle Scholar
  22. 22.
    Latha, N., & Gowri, M. (2014). Biosynthesis and characterisation of Fe3O4 nanoparticles using Caricaya papaya leaves extract. International Journal of Science and Research, 3, 1551–1556.Google Scholar
  23. 23.
    Lee, N., & Hyeon, T. (2012). Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chemical Society Reviews, 41, 2575–2589.CrossRefGoogle Scholar
  24. 24.
    Liu, L.-H., Dietsch, H., Schurtenberger, P., & Yan, M. (2009). Photoinitiated coupling of unmodified monosaccharides to iron oxide nanoparticles for sensing proteins and bacteria. Bioconjugate Chemistry, 20, 1349–1355.CrossRefGoogle Scholar
  25. 25.
    Lokesh, K., & Sivakiran, R. (2014). Biological methods of dye removal from textile effluents-a review. Journal of Biochemical Technology, 3, 177–180.Google Scholar
  26. 26.
    Lucena, G., de Lima, L., Honório, L., de Oliveira, A., Tranquilim, R., Longo, E., de Souza, A., Maia, A. S., & dos Santos, I. (2017). CaSnO 3 obtained by modified Pechini method applied in the photocatalytic degradation of an azo dye. Cerâmica, 63, 536–541.CrossRefGoogle Scholar
  27. 27.
    Maddah, B. (2015). A simple colorimetric kit for determination of ketamine hydrochloride in water samples. Analytical Methods, 7, 10364–10370.CrossRefGoogle Scholar
  28. 28.
    Mahdavinia, G. H., Rostamizadeh, S., Amani, A. M., & Sepehrian, H. (2012). Fast and efficient method for the synthesis of 2-arylbenzimidazoles using MCM-41-SO3H. Heterocyclic Communications, 18, 33–37.CrossRefGoogle Scholar
  29. 29.
    Makarov, V. V., Makarova, S. S., Love, A. J., Sinitsyna, O. V., Dudnik, A. O., Yaminsky, I. V., Taliansky, M. E., & Kalinina, N. O. (2014). Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir, 30, 5982–5988.CrossRefGoogle Scholar
  30. 30.
    Martínek, V., & Stiborová, M. (2002). Metabolism of carcinogenic azo dye Sudan I by rat, rabbit, minipig and human hepatic microsomes. Collection of Czechoslovak Chemical Communications, 67, 1883–1898.CrossRefGoogle Scholar
  31. 31.
    Mokhtar, M. (2017). Application of synthetic layered sodium silicate magadiite nanosheets for environmental remediation of methylene blue dye in water. Materials (Basel), 10, 760.Google Scholar
  32. 32.
    Muthukumar, H., Matheswaran, M. (2015). Amaranthus spinosus leaf extract mediated FeO nanoparticles: physicochemical traits, photocatalytic and antioxidant activity. ACS Sustainable Chemistry & Engineering, 3, 3149–3156.Google Scholar
  33. 33.
    Ni, Z.-M., Xia, S.-J., Wang, L.-G., Xing, F.-F., & Pan, G.-X. (2007). Treatment of methyl orange by calcined layered double hydroxides in aqueous solution: adsorption property and kinetic studies. Journal of Colloid and Interface Science, 316, 284–291.CrossRefGoogle Scholar
  34. 34.
    Niraimathee, V., Subha, V., Ravindran, R. E., & Renganathan, S. (2016). Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. International Journal of Environment and Sustainable Development, 15, 227–240.CrossRefGoogle Scholar
  35. 35.
    Njagi, E. C., Huang, H., Stafford, L., Genuino, H., Galindo, H. M., Collins, J. B., Hoag, G. E., & Suib, S. L. (2010). Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 27, 264–271.CrossRefGoogle Scholar
  36. 36.
    Palagiri, B., Chintaparty, R., Nagireddy, R. R., & Imma Reddy, V. R. (2017). Influence of synthesis conditions on structural, optical and magnetic properties of iron oxide nanoparticles prepared by hydrothermal method. Phase Transitions, 90, 578–589.CrossRefGoogle Scholar
  37. 37.
    Redha, Z. M., Yusuf, H. A., Ahmed, H. A., Fielden, P. R., Goddard, N. J., & Baldock, S. J. (2017). A miniaturized injection-moulded flow-cell with integrated conducting polymer electrodes for on-line electrochemical degradation of azo dye solutions. Microelectronic Engineering, 169, 16–23.CrossRefGoogle Scholar
  38. 38.
    Rinawati, D. I., Sari, D. P., Purwanggono, B., Hermawan, A. T. (2017). Environmental impact analysis of batik natural dyes using life cycle assessment. In: AIP Conference Proceedings. vol 1. AIP Publishing, p 020044.Google Scholar
  39. 39.
    Rostamizadeh, S., Amani, A. M., Aryan, R., Ghaieni, H. R., & Norouzi, L. (2009). Very fast and efficient synthesis of some novel substituted 2-arylbenzimidazoles in water using ZrOCl 2· nH 2 O on montmorillonite K10 as catalyst. Monatshefte für Chemie-Chemical Monthly, 140, 547–552.CrossRefGoogle Scholar
  40. 40.
    Shahwan, T., Sirriah, S. A., Nairat, M., Boyacı, E., Eroğlu, A. E., Scott, T. B., & Hallam, K. R. (2011). Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal, 172, 258–266.CrossRefGoogle Scholar
  41. 41.
    Taufiq, A., Pratapa, S., Zainuri, M. (2015). Various magnetic properties of magnetite nanoparticles synthesized from iron-sands by coprecipitation method at room temperature. In: Materials Science Forum. Trans Tech Publications Ltd., p 229.Google Scholar
  42. 42.
    Wang, T., Jin, X., Chen, Z., Megharaj, M., Naidu, R. J. S. (2014). Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Science of the Total Environment, 466, 210–213.Google Scholar
  43. 43.
    Wang, Z., Fang, C., & Megharaj, M. (2014). Characterization of iron–polyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of azo dye. ACS Sustainable Chemistry & Engineering, 2, 1022–1025.CrossRefGoogle Scholar
  44. 44.
    Wang, Z., Fang, C., & Mallavarapu, M. (2015). Characterization of iron–polyphenol complex nanoparticles synthesized by sage (Salvia officinalis) leaves. Environmental Technology & Innovation, 4, 92–97.CrossRefGoogle Scholar
  45. 45.
    Xiao, Z., Yuan, M., Yang, B., Liu, Z., Huang, J., & Sun, D. (2016). Plant-mediated synthesis of highly active iron nanoparticles for Cr (VI) removal: Investigation of the leading biomolecules. Chemosphere, 150, 357–364.CrossRefGoogle Scholar
  46. 46.
    Yu, C., Ding, B., Zhang, X., Deng, X., Deng, K., Cheng, Z., Xing, B., Jin, D., & Lin, J. (2018). Targeted iron nanoparticles with platinum-(IV) prodrugs and anti-EZH2 siRNA show great synergy in combating drug resistance in vitro and in vivo. Biomaterials, 155, 112–123.CrossRefGoogle Scholar
  47. 47.
    Zhu, Y.-C., Zhao, J.-Z., Zhou, B., Zhao, X., & Wang, Z.-C. (2008). Preparation of metallic iron nanoparticles with liquid phase chemical reduction method. Chemical Journal of Chinese Universities, 10, 024.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sajedeh Lohrasbi
    • 1
  • Mohammad Amin Jadidi Kouhbanani
    • 1
  • Nasrin Beheshtkhoo
    • 1
  • Younes Ghasemi
    • 1
    • 2
  • Ali Mohammad Amani
    • 1
    • 2
    Email author
  • Saeed Taghizadeh
    • 3
    Email author
  1. 1.Department of Medical Nanotechnology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
  2. 2.Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShirazIran
  3. 3.Department of Medical Biotechnology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran

Personalised recommendations