A Novel Branched Copolymer-Containing Anticancer Drug for Targeted Therapy: In Vitro Research

  • A. Yurchenko
  • N. Nikitina
  • V. Sokolova
  • S. Prylutska
  • Yu. KuzivEmail author
  • P. Virych
  • V. Chumachenko
  • N. Kutsevol
  • S. Ponomarenko
  • Yu. Prylutskyy
  • M. Epple


The viability of cancer cell lines (human transformed cervix epithelial cells, HeLa, and osteoblastic cell line from a C57BL/6 mouse calvaria, MC3T3, as models for cancer cells) was studied using MTT and live/dead assays after incubation with a branched copolymer dextran-graft polyacrylamide in anionic form (D-g-PAAan) as nanocarrier for drugs, doxorubicin (Dox), cisplatin (Cis), as well as their D-g-PAAan+Dox and D-g-PAAan+Cis mixtures, as a function of the concentration. Fourier transform infrared spectroscopy clearly indicates the complex formation of Cis and Dox with the D-g-PAAan branched copolymer. The size distribution of particles in aqueous solution and its stability were determined by dynamic light scattering. The in vitro uptake of studied particles into cancer cells was demonstrated by confocal laser scanning microscopy. It was found that D-g-PAAan+Dox particles in contrast to Dox alone showed higher toxicity towards cancer cells. This indicates the possibility of further preclinical studies of the water-soluble D-g-PAAan+Dox particles on animal tumor models in vivo as a promising anticancer agent.


Doxorubicin Cisplatin Branched copolymer HeLa and MC3T3 cells Cytotoxicity 



We thank the Imaging Centre Campus Essen (ICCE) for access to the CLSM.

Funding Information

A. Yurchenko and N. Nikitina are grateful to Deutscher Akademischer Austauschdienst (DAAD) for financial support within the Leonhard-Euler program. This work was also partly supported by the Bilaterial Ukrainian-Belarusian Scientific Project.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Humans and Animals Statement


Informed Consent



  1. 1.
    Prylutska, S., Panchuk, R., Gołuński, G., Skivka, L., Prylutskyy, Y., Hurmach, V., Skorokhyd, N., Borowik, A., Woziwodzka, A., Piosik, J., Kyzyma, O., Garamus, V., Bulavin, L., Evstigneev, M., Buchelnikov, A., Stoika, R., Berger, W., Ritter, U., & Scharff, P. (2017). С60 fullerene enhances cisplatin anticancer activity and overcomes tumor cells drug resistance. Nano Research, 10, 652–671.CrossRefGoogle Scholar
  2. 2.
    Bhattacharyya, K., & Mukherjee, S. (2018). Fluorescent metal nano-clusters as next generation fluorescent probes for cell imaging and drug delivery. Bulletin of the Chemical Society of Japan, 91, 447–454.CrossRefGoogle Scholar
  3. 3.
    Mehanna, S., Mansour, N., Audi, H., Bodman-Smith, K., Mroueh, M. A., Taleb, R. I., Daher, C. F., & Khnayzer, R. S. (2019). Enhanced cellular uptake and photochemotherapeutic potential of a lipophilic strained Ru(II) polypyridyl complex. RSC Advances,9, 17254–17265.CrossRefGoogle Scholar
  4. 4.
    Marturano, V., Marcille, H., Cerruti, P., Bandeira, N. A. G., Giamberini, M., Trojanowska, A., Tylkowski, B., Carfagna, C., Ausanio, G., & Ambrogi, V. (2019). Visible-light responsive nanocapsules for wavelength-selective release of natural active agents. ACS Applied Nano Materials, 2, 4499–4506.Google Scholar
  5. 5.
    Fakhrullina, G., Khakimova, E., Akhatova, F., Lazzara, G., Parisi, F., & Fakhrullin, R. (2019). Selective antimicrobial effects of Curcumin@Halloysite nanoformulation: a Caenorhabditis elegans study. ACS Applied Materials & Interfaces, 11, 23050–23064.CrossRefGoogle Scholar
  6. 6.
    Sambi, M., Qorri, B., & Malardier-Jugroot, C. (2017). Advancements in polymer science: ‘smart’ drug delivery systems for the treatment of cancer. MOJ Polymer Science, 1, 113–118.Google Scholar
  7. 7.
    Istoin, Y. P., Laptsevich, T. P., Bizyuk, S. A., & Alexandrova, E. N. (2006). Photodynamic efficacy of topical application of chlorin e6-polyvinyl pyrrolidone complex in tumor-bearing rats. Experimental Oncology, 28, 299–302.Google Scholar
  8. 8.
    Telegeev, G., Kutsevol, N., Chumachenko, V., Naumenko, A., Telegeeva, P., Filipchenko, S., et al. (2017). Dextran-polyacrylamide as matrices for creation of anticancer nanocomposite. International Journal of Polymer Science, 2017, 9.Google Scholar
  9. 9.
    Kutsevol, N., Naumenko, A., Harahuts, Y., Chumachenko, V., Shton, I., Shishko, E., et al. (2018). New hybrid composites for photodynamic therapy: synthesis, characterization and biological study. Applied Nanoscience, 2018.Google Scholar
  10. 10.
    Matvienko, T., Sokolova, V., Prylutska, S., Harahuts, Y., Kutsevol, N., Kostjukov, V., et al. (2019). In vitro study of the anticancer activity of various doxorubicin-containing dispersions. BioImpacts, 9, 57–63.CrossRefGoogle Scholar
  11. 11.
    Kutsevol, N. V., Chumachenko, V. A., Rawiso, M., Shkodich, V. F., & Stoyanov, O. V. (2015). Star-like polymers dextran-polyacrylamide: the prospects of application for nanotechnology. Journal of Structural Chemistry, 56, 1016–1023.CrossRefGoogle Scholar
  12. 12.
    Kutsevol, N., Bezugla, T., Bezuglyi, M., & Rawiso, M. (2012). Branched dextran-graft-polyacrylamide copolymers as perspective materials for nanotechnology. Macromolecular Symposia, 317-318, 82–89.CrossRefGoogle Scholar
  13. 13.
    Kutsevol, N., Bezuglyi, M., & Rawiso, M. (2014). Star-like dextran-graft-(polyacrylamide-co-polyacrylic acid) copolymers. Macromolecular Symposia, 335, 12–16.CrossRefGoogle Scholar
  14. 14.
    Nurcahyanti, A. D. R., & Wink, M. (2016). L-Canavanine potentiates the cytotoxicity of doxorubicin and cisplatin in arginine deprived human cancer cells. Peer Journal, 4, e1542.CrossRefGoogle Scholar
  15. 15.
    Bezuglyi, M., Kutsevol, N., Rawiso, M., & Bezugla, T. (2012). Water-soluble branched copolymers dextran-polyacrylamide and their anionic derivates as matrices for metal nanoparticles in-situ synthesis. Chemik, 66, 862–867.Google Scholar
  16. 16.
    Kutsevol, N., Guenet, J. M., Melnyk, N., Sarazin, D., & Rochas, C. (2006). Solution properties of dextran-polyacrylamide graft copolymers. Polymer, 47, 2061–2068.CrossRefGoogle Scholar
  17. 17.
    Yang, X., Zhang, X., Liu, Z., Huang, Y., & Chen, Y. (2008). High-efficiency loading and controlled release of doxorubicin hydrochloride on grapheme oxide. Journal of Physical Chemistry C, 112, 17554–17558.CrossRefGoogle Scholar
  18. 18.
    Wang, Y., Liu, Q., Qiu, L., Wang, T., Yuan, H., Lin, J., et al. (2015). Molecular structure, IR spectra, and chemical reactivity of cisplatin and transplatin: DFT studies, basis set effect and solvent effect. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 150, 902–908.CrossRefGoogle Scholar
  19. 19.
    Nayak, B. R., & Singh, R. P. (2001). Synthesis and characterization of grafted hydroxypropyl guar gum by ceric ion induced initiation. European Polymer Journal, 37, 1655–1666.CrossRefGoogle Scholar
  20. 20.
    Kiatkamjornwong, S., Chomsaksakul, W., & Sonsuk, M. (2000). Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide. Radiation Physics and Chemistry, 59, 413–427.CrossRefGoogle Scholar
  21. 21.
    Tolkachov, M., Sokolova, V., Korolovych, V., Yu, P., Epple, M., Ritter, U., & Scharff, P. (2016). Study of biocompatibility effect of nanocarbon particles on various cell types in vitro. Materialwissenschaft und Werkstofftechnik, 47, 216–221.Google Scholar
  22. 22.
    Gurunathan, S., Kang, M.-H., Qasim, M., & Kim, J.-H. (2018). Nanoparticle-mediated combination therapy: two-in-one approach for cancer. International Journal of Molecular Sciences, 19, 3264.CrossRefGoogle Scholar
  23. 23.
    Xu, Y., Shan, Y., Cong, H., Shen, Y., & Yu, B. (2018). Advanced carbon-based nanoplatforms combining drug delivery and thermal therapy for cancer treatment. Current Pharmaceutical Design, 24, 4060–4076.CrossRefGoogle Scholar
  24. 24.
    Bhattarai, P., Hameed, S., & Dai, Z. (2018). Recent advances in anti-angiogenic nanomedicines for cancer therapy. Nanoscale, 10, 5393–5423.CrossRefGoogle Scholar
  25. 25.
    Singla, R., Sharma, C., & Shukla, A. K. (2019). Toxicity concerns of therapeutic nanomaterials. Journal of Nanoscience and Nanotechnology, 19, 1889–1907.CrossRefGoogle Scholar
  26. 26.
    Prylutskyy, Y., Bychko, A., Sokolova, V., Prylutska, S., Evstigneev, M., Rybalchenko, V., et al. (2016). Interaction of C60 fullerene complexed to doxorubicin with model bilipid membranes and its uptake by HeLa cells. Materials Science and Engineering: C, 59, 398–403.CrossRefGoogle Scholar
  27. 27.
    Choi, J., & Rubner, M. F. (2005). Influence of the degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules, 38, 116–124.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ESC “Institute of Biology and MedicineTaras Shevchenko National University of KyivKyivUkraine
  2. 2.Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenEssenGermany
  3. 3.Faculty of ChemistryTaras Shevchenko National University of KyivEssenUkraine

Personalised recommendations