Advertisement

Quadratic Convective Heat Transport of Casson Nanoliquid Over a Contract Cylinder: An Unsteady Case

  • M. Gnaneswara Reddy
  • P. VIjayakumari
  • M. V. V. N. L. Sudharani
  • K. Ganesh KumarEmail author
Article
  • 9 Downloads

Abstract

An unsteady MHD flow of nonlinear radiative heat transfer of Casson liquid over a contract cylinder has been modeled. This is a theoretical study that involves mathematical approach to do the investigation. The nonlinear partial differential equations for heat transfer are solved numerically using the RKF-45 method. Effects of embedded kinetic parameters on the velocity and temperature of the system are depicted graphically and discussed accordingly. It is found that the rate of cooling is much faster for higher values of unsteadiness parameter. The higher value of unsteady parameter decreases the profiles of velocity and temperature. Further, thermal boundary layer thickness is decreased when the Prandtl number increases.

Keywords

Casson liquid Unsteady flow Nonlinear radiation Magnetic field Contract cylinder 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of Interest.

Research involving humans and animals statement

None.

Informed consent

None.

Funding statement

None.

References

  1. 1.
    Hayat, T., Tamoor, M., Khan, M. I., & Alsaedi, A. (2016). Numerical simulation for nonlinear radiative flow by convective cylinder. Results in Physics, 6, 1031–1035.CrossRefGoogle Scholar
  2. 2.
    Makinde, O. D., & Animasaun, I. L. (2016). Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a parabolic of revolution. Journal of Molecular Liquids, 221, 733–743.CrossRefGoogle Scholar
  3. 3.
    Hayat, T., Qayyum, S., Alsaedi, A., & Shehzad, S. A. (2016). Nonlinear thermal radiation aspects in stagnation point flow of tangent hyperbolic nanofluid with double diffusive convection. Journal of Molecular Liquids, 223, 969–978.CrossRefGoogle Scholar
  4. 4.
    Khan, M. I., Tamoor, M., Hayat, T., & Alsaedi, A. (2017). MHD Boundary layer thermal slip flow by nonlinearly stretching cylinder with suction/blowing and radiation. Results in Physics, 7, 1207–1211.CrossRefGoogle Scholar
  5. 5.
    Kumar, R., Sood, S., Sheikholeslami, M., & Shehzad, S. A. (2017). Nonlinear thermal radiation and cubic autocatalysis chemical reaction effects on the flow of stretched nanofluid under rotational oscillations. Journal of Colloid and Interface Science, 505(1), 253–265.CrossRefGoogle Scholar
  6. 6.
    Kumar, K. G. (2019). Scrutinization of 3D flow and nonlinear radiative heat transfer of non-Newtonian nanoparticles over an exponentially sheet. International Journal of Numerical Methods for Heat & Fluid Flow.  https://doi.org/10.1108/HFF-12-2018-0741.
  7. 7.
    Lokesh, H. J., Gireesha, B. J., & Kumar, K. G. (2019). Characterization of chemical reaction on magnetohydrodynamics flow and nonlinear radiative heat transfer of Casson nanoparticles over an exponentially sheet. Journal of Nanofluids, 8(6), 1260–1266.CrossRefGoogle Scholar
  8. 8.
    Kumar, K. G., Ramesh, G. K., & Gireesha, B. J. (2018). Thermal analysis of generalized burgers nanofluid over a stretching sheet with nonlinear radiation and non-uniform heat source/sink. Archives of Thermodynamics, 39(2).Google Scholar
  9. 9.
    Kumar, K. G., Gireesha, B. J., Krishnamurthy, M. R., & Rudraswamy, N. G. (2017). An unsteady squeezed flow of a tangent hyperbolic fluid over a sensor surface in the presence of variable thermal conductivity. Results in physics, 7, 3031–3036.CrossRefGoogle Scholar
  10. 10.
    Kumar, K. G., Gireesha, B. J., Ramesh, G. K., & Rudraswamy, N. G. (2018). Double-diffusive free convective flow of Maxwell nanofluid past a stretching sheet with nonlinear thermal radiation. Journal of Nanofluids, 7(3), 499–508.CrossRefGoogle Scholar
  11. 11.
    Fang, T., Zhang, J., Zhong, Y., & Tao, H. (2011). Unsteady viscous flow over an expanding stretching cylinder. Chinese Physics Letters, 28, 1–4.Google Scholar
  12. 12.
    Munawar, S., Mehmood, A., & Ali, A. (2012). Unsteady flow of viscous fluid over the vacillate stretching cylinder. International Journal for Numerical Methods in Fluids, 70, 671–681.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zaimi, W., Anuar, I., & Pop, I. (2013). Unsteady viscous flow over a shrinking cylinder. Journal King Saud University - Science, 25, 143–148.CrossRefGoogle Scholar
  14. 14.
    Malvandi, A. (2015). The unsteady flow of a nanofluid in the stagnation point region of a time-dependent rotating sphere. Thermal Science, 19(5), 1603–1612.CrossRefGoogle Scholar
  15. 15.
    Zaimi, K., Ishak, A., & Pop, I. (2014). Unsteady flow due to a contracting cylinder in a nanofluid using Buongiorno’s model. International Journal of Heat and Mass Transfer, 68, 509–513.CrossRefGoogle Scholar
  16. 16.
    Rohni, A. M., Ahmad, S., Ismail, A. I. M., & Pop, I. (2013). Flow and heat transfer over an unsteady shrinking sheet with suction in a nanofluid using Buongiorno’s model. International Communications in Heat and Mass Transfer, 43, 75–80.CrossRefGoogle Scholar
  17. 17.
    Abbas, Z., Rasool, S., & Rashidi, M. M. (2015). Heat transfer analysis due to an unsteady stretching/shrinking cylinder with partial slip condition and suction. Ain Shams Engineering Journal, 6, 939–945.CrossRefGoogle Scholar
  18. 18.
    Casson, N. (1959). A flow equation for pigment oil suspensions of the printing ink type. In C. C. Mill (Ed.), Rheology of disperse systems (pp. 84–102). Oxford: Pergamon Press.Google Scholar
  19. 19.
    Shehzad, S. A., Hayat, T., & Alsaedi, A. (2016). Three dimensional MHD flow of Casson fluid in porous medium with heat generation. Journal of Applied Fluid Mechanics, 9(1), 215–223.CrossRefGoogle Scholar
  20. 20.
    Kataria, H. R., & Patel, H. R. (2016). Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in porous medium. Alexandria Engineering Journal, 55(1), 583–595.CrossRefGoogle Scholar
  21. 21.
    Khan, M. I., Waqas, M., Hayat, T., & Alsaedi, A. (2017). A comparative study of Casson fluid with homogeneous-heterogeneous reactions. Journal of Colloid and Interface Science, 498, 85–90.CrossRefGoogle Scholar
  22. 22.
    Shateyi, S., Mabood, F., & Lorenzini, G. (2017). Casson fluid flow: free convective heat and mass transfer over an unsteady permeable stretching surface considering viscous dissipation. Journal of Engineering Thermophysics, 26(1), 39–52.CrossRefGoogle Scholar
  23. 23.
    Gireesha, B. J., Kumar, K. G., Krishnamurthy, M. R., & Manjunatha, S. (2019). Impact of ohmic heating on MHD mixed convection flow of Casson fluid by considering Cross diffusion effect. Nonlinear Engineering, 8(1), 380–388.CrossRefGoogle Scholar
  24. 24.
    Kumar, K. G., Archana, M., Krishnamurthy, M. R., & Gireesha, B. J. (2018). Cross diffusion effect on MHD mixed convection flow of nonlinear radiative heat and mass transfer of Casson fluid over a vertical plate. Results in physics, 8, 694–701.CrossRefGoogle Scholar
  25. 25.
    Kumar, K. G., Gireesha, B. J., Krishnamurthy, M. R., & Prasannakumara, B. C. (2018). Impact of convective condition on Marangoni convection flow and heat transfer in Casson nanofluid with uniform heat source sink. Journal of Nanofluids, 7(1), 108–114.CrossRefGoogle Scholar
  26. 26.
    Kumar, K. G., Ramesh, G. K., & Gireesha, B. J. (2017). Numerical solutions of double-diffusive natural convection flow of MHD Casson fluid over a stretching vertical surface with thermal radiation. Journal of Numerical Analysis and Applied Mathematics, 2(2), 6–14.Google Scholar
  27. 27.
    Kumar, K. G., Gireesha, B. J., Prasannakumara, B. C., Ramesh, G. K., & Makinde, O. D. (2018). Phenomenon of radiation and viscous dissipation on Casson nanoliquid flow past a moving melting surface. Diffusion Foundations, 11, 33–42.CrossRefGoogle Scholar
  28. 28.
    Kumar, K. G., Gireesha, B. J., Prasannakumara, B. C., & Makinde, O. D. (2017). Impact of chemical reaction on marangoni boundary layer flow of a Casson nano liquid in the presence of uniform heat source sink. Diffusion Foundations, 11, 22–32.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Gnaneswara Reddy
    • 1
  • P. VIjayakumari
    • 1
  • M. V. V. N. L. Sudharani
    • 1
  • K. Ganesh Kumar
    • 2
    Email author
  1. 1.Department of MathematicsAcharya Nagarjuna University CampusOngoleIndia
  2. 2.SJM Institute of TechnologyChitradurgaIndia

Personalised recommendations