Advertisement

In Vitro Antioxidant, Antipathogenicity and Cytotoxicity Effect of Silver Nanoparticles Fabricated by Onion (Allium cepa L.) Peel Extract

  • Rajkumar Krishnasamy Sekar
  • Arun Sridhar
  • Balaji Perumalsamy
  • Dinesh Babu Manikandan
  • Thirumurugan RamasamyEmail author
Article
  • 25 Downloads

Abstract

In this study, we emphasize a rapid and cost-effective biogenic approach for the synthesis of silver nanoparticles (AgNPs) using an aqueous extract of onion (Allium cepa L.) peel (brown skin) acting as a reducing and capping agent. The synthesized AgNPs were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS) analysis. The morphology of synthesized AgNPs was a spherical shape, cubic structure with an average particle size range of 33–50 nm. The AgNPs have higher antioxidant activities (2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTs) when compared with ascorbic acid (vitamin C). The synthesized AgNPs have strong antipathogenic activity towards foodborne illness–causing bacterial pathogens of Gram-positive (Bacillus sp., Staphylococcus aureus, and Corynebacterium sp.) and Gram-negative (Escherichia coli, Salmonella sp., and Vibrio cholerae) organisms. Furthermore, the AgNPs have the potential anti-proliferative action on A549 lung cancer cell lines, suggesting a novel chemotherapeutic agent against human lung cancer.

Keywords

Quercetin A549 cancer cell line Mitochondrial swelling ROS generation Nuclear fragmentation 

Notes

Acknowledgments

The authors thank UGC-CPEPA National Centre for Alternatives to Animal Experiments (NCAAE) for cell culture studies in this work. The authors are grateful to UGC-SAP DRS-II and DST FIST-II for providing instrumentation facilities in the Department of Animal Science, Bharathidasan University, Tiruchirappalli – 620 024.

Funding Information

The author K.S. Rajkumar gratefully acknowledges the Department of Science & Technology (DST), Govt. of India, for providing fellowship under the DST-INSPIRE Fellowship (IF140546).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

References

  1. 1.
    Kim, D., Shin, K., Kwon, S. G., & Hyeon, T. (2018). Synthesis and biomedical applications of multifunctional nanoparticles. Advanced Materials, 30(49), 1802309.  https://doi.org/10.1002/adma.201802309.CrossRefGoogle Scholar
  2. 2.
    Chen, G., Roy, I., Yang, C., & Prasad, P. N. (2016). Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chemical Reviews.  https://doi.org/10.1021/acs.chemrev.5b00148.CrossRefGoogle Scholar
  3. 3.
    Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine.  https://doi.org/10.1016/j.nano.2009.07.002.CrossRefGoogle Scholar
  4. 4.
    Souayeh, B., Kumar, K. G., Reddy, M. G., Rani, S., Hdhiri, N., Alfannakh, H., & Rahimi-Gorji, M. (2019). Slip flow and radiative heat transfer behavior of titanium alloy and ferromagnetic nanoparticles along with suspension of dusty fluid. Journal of Molecular Liquids.  https://doi.org/10.1016/j.molliq.2019.111223.CrossRefGoogle Scholar
  5. 5.
    Kumar, K. G. (2018). Nonlinear radiative heat transfer of cu-water nanoparticles over an unsteady rotating flow under the influence of particle shape. In B. J. Gireesha (Ed.), (p. Ch. 10). Rijeka: IntechOpen. doi: https://doi.org/10.5772/intechopen.74807.Google Scholar
  6. 6.
    Kumar, K. G., & Archana, M. (2019). Comparative study of SiO2 and TiO2 nanoparticles on flow and heat transfer of dusty fluid over a stretching sheet. Multidiscipline Modeling in Materials and Structures.  https://doi.org/10.1108/MMMS-05-2018-0091.CrossRefGoogle Scholar
  7. 7.
    Song, J. Y., & Kim, B. S. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering.  https://doi.org/10.1007/s00449-008-0224-6.CrossRefGoogle Scholar
  8. 8.
    Gleiter, H. (1990). J. Lucas, X.H. Zhang, Mater. Res. Bull 21 (1986) 371. Progress in Materials Science, 33(4), 223–315. doi: https://doi.org/10.1016/0079-6425(89)90001-7.CrossRefGoogle Scholar
  9. 9.
    Patel, P., Agarwal, P., Kanawaria, S., Kachhwaha, S., & Kothari, S. L. (2015). Plant-based synthesis of silver nanoparticles and their characterization BT - nanotechnology and plant sciences: nanoparticles and their impact on plants. In M. H. Siddiqui, M. H. Al-Whaibi, & F. Mohammad (Eds.), (pp. 271–288). Cham: Springer International Publishing.  https://doi.org/10.1007/978-3-319-14502-0_13.Google Scholar
  10. 10.
    Reddy, M. G. G., Kumar, K. G., Shehzad, S. A., Javed, T., & Ambreen, T. (2019). Thermal transportation analysis of nanoliquid squeezed flow past a sensor surface with MCWCNT and SWCNT. Heat Transfer-Asian Research.  https://doi.org/10.1002/htj.21483.CrossRefGoogle Scholar
  11. 11.
    Rajkumar, K. S., Kanipandian, N., & Thirumurugan, R. (2016). Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita. Applied Nanoscience (Switzerland).  https://doi.org/10.1007/s13204-015-0417-7.CrossRefGoogle Scholar
  12. 12.
    Janakiraman, V., Govindarajan, K., & C R, M. (2019). Biosynthesis of silver nanoparticles from endophytic fungi, and its cytotoxic activity. BioNanoScience, 9(3), 573–579. doi: https://doi.org/10.1007/s12668-019-00631-1.CrossRefGoogle Scholar
  13. 13.
    Zheng, Y., Huang, Y., Shi, H., & Fu, L. (2019). Green biosynthesis of ZnO nanoparticles by plectranthus amboinicus leaf extract and their application for electrochemical determination of norfloxacin. Inorganic and Nano-Metal Chemistry, 49(9), 277–282.  https://doi.org/10.1080/24701556.2019.1661441.CrossRefGoogle Scholar
  14. 14.
    Firdhouse, M. J., Lalitha, P., Firdhouse, M. J., & Lalitha, P. (2015). Biosynthesis of silver nanoparticles and its applications. Journal of Nanotechnology.  https://doi.org/10.1021/acs.macromol.7b01276.CrossRefGoogle Scholar
  15. 15.
    Mollick, M. M. R., Bhowmick, B., Maity, D., Mondal, D., Bain, M. K., Bankura, K., et al. (2012). Green synthesis of silver nanoparticles using Paederia foetida L. leaf extract and assessment of their antimicrobial activities. International Journal of Green Nanotechnology: Biomedicine.  https://doi.org/10.1080/19430892.2012.706103.CrossRefGoogle Scholar
  16. 16.
    Dobrucka, R., Dlugaszewska, J., & Kaczmarek, M. (2016). Antimicrobial and cytostatic activity of biosynthesized nanogold prepared using fruit extract of Ribes nigrum. Arabian Journal of Chemistry.  https://doi.org/10.1016/j.arabjc.2016.02.009.
  17. 17.
    Khan, A. U., Khan, M., & Khan, M. M. (2019). Antifungal and antibacterial assay by silver nanoparticles synthesized from aqueous leaf extract of Trigonella foenum-graecum. BioNanoScience.  https://doi.org/10.1007/s12668-019-00643-x.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hamidi, A., Taghavizadeh Yazdi, M. E., Amiri, M. S., Hosseini, H. A., & Darroudi, M. (2019). Biological synthesis of silver nanoparticles in Tribulus terrestris L. extract and evaluation of their photocatalyst, antibacterial, and cytotoxicity effects. Research on Chemical Intermediates. doi: https://doi.org/10.1007/s11164-019-03770-y.CrossRefGoogle Scholar
  19. 19.
    Gajendran, B., Durai, P., Varier, K. M., Liu, W., Li, Y., Rajendran, S., et al. (2019). Green synthesis of silver nanoparticle from Datura inoxia flower extract and its cytotoxic activity. BioNanoScience.  https://doi.org/10.1007/s12668-019-00645-9.CrossRefGoogle Scholar
  20. 20.
    Siddiqi, K. S., Rashid, M., Tajuddin, Husen, A., & Rehman, S. (2019). Biofabrication of silver nanoparticles from Diospyros montana, their characterization and activity against some clinical isolates. BioNanoScience. doi: https://doi.org/10.1007/s12668-019-00629-9.CrossRefGoogle Scholar
  21. 21.
    Herrera, E., Jiménez, R., Aruoma, O. I., Hercberg, S., Sánchez-García, I., & Fraga, C. (2009). Aspects of antioxidant foods and supplements in health and disease. In Nutrition Reviews.  https://doi.org/10.1111/j.1753-4887.2009.00177.x.CrossRefGoogle Scholar
  22. 22.
    Moure, A., Cruz, J. M., Franco, D., Manuel Domínguez, J., Sineiro, J., Domínguez, H., et al. (2001). Natural antioxidants from residual sources. Food Chemistry.  https://doi.org/10.1016/S0308-8146(00)00223-5.CrossRefGoogle Scholar
  23. 23.
    Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry, 49(11), 5165–5170.  https://doi.org/10.1021/jf010697n.CrossRefGoogle Scholar
  24. 24.
    Saha, S., Sarkar, J., Chattopadhyay, D., Patra, S., Chakraborty, A., & Acharya, K. (2010). Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodulosa and its antimicrobial activity. Digest Journal of Nanomaterials and Biostructures.Google Scholar
  25. 25.
    Singh, A. K., Talat, M., Singh, D. P., & Srivastava, O. N. (2010). Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. Journal of Nanoparticle Research.  https://doi.org/10.1007/s11051-009-9835-3.CrossRefGoogle Scholar
  26. 26.
    Augusti, K. T., & Mathew, P. T. (1974). Lipid lowering effect of allicin (diallyl disulphide-oxide) on long term feeding to normal rats. Experientia, 30(5), 468–470.  https://doi.org/10.1007/BF01926297.CrossRefGoogle Scholar
  27. 27.
    Block, E. (1985). The chemistry of garlic and onions. Scientific American, 252(3), 114–119.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Griffiths, G., Trueman, L., Crowther, T., Thomas, B., & Smith, B. (2002). Onions - a global benefit to health. Phytotherapy Research.  https://doi.org/10.1002/ptr.1222.
  29. 29.
    Dorsch, W., Wagner, H., Bayer, T., Fessler, B., Hein, G., Ring, J., … Weiß, E. (1988). Anti-asthmatic effects of onions. Alk(en)ylsulfinothioic acid alk(en)yl-esters inhibit histamine release, leukotriene and thromboxane biosynthesis in vitro and counteract paf and allergen-induced bronchial obstruction in vivo. Biochemical Pharmacology. doi: https://doi.org/10.1016/0006-2952(88)90663-6.CrossRefGoogle Scholar
  30. 30.
    Rahman, M. S. (2007). Allicin and other functional active components in garlic: health benefits and bioavailability. International Journal of Food Properties.  https://doi.org/10.1080/10942910601113327.CrossRefGoogle Scholar
  31. 31.
    Benitez, V., Molla, E., Martin-Cabrejas, M. A., Aguilera, Y., Lopez-Andreu, F. J., Cools, K., et al. (2011). Characterization of industrial onion wastes (Allium cepa L.): dietary fibre and bioactive compounds. Plant foods for human nutrition (Dordrecht, Netherlands), 66(1), 48–57.  https://doi.org/10.1007/s11130-011-0212-x.CrossRefGoogle Scholar
  32. 32.
    Prakash, D., Singh, B. N., & Upadhyay, G. (2007). Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Food Chemistry.  https://doi.org/10.1016/j.foodchem.2006.06.063.CrossRefGoogle Scholar
  33. 33.
    Nuutila, A. M., Puupponen-Pimiä, R., Aarni, M., & Oksman-Caldentey, K. M. (2003). Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chemistry.  https://doi.org/10.1016/S0308-8146(02)00476-4.CrossRefGoogle Scholar
  34. 34.
    Sahni, G., Panwar, A., & Kaur, B. (2015). Controlled green synthesis of silver nanoparticles by Allium cepa and Musa acuminata with strong antimicrobial activity. International Nano Letters.  https://doi.org/10.1007/s40089-015-0142-y.CrossRefGoogle Scholar
  35. 35.
    Khalilzadeh, M. A., & Borzoo, M. (2016). Green synthesis of silver nanoparticles using onion extract and their application for the preparation of a modified electrode for determination of ascorbic acid. Journal of Food and Drug Analysis.  https://doi.org/10.1016/j.jfda.2016.05.004.CrossRefGoogle Scholar
  36. 36.
    Kim, J., Cha, Y. J., Lee, K. H., & Park, E. (2013). Effect of onion peel extract supplementation on the lipid profile and antioxidative status of healthy young women: a randomized, placebo-controlled, double-blind, crossover trial. Nutrition Research and Practice.  https://doi.org/10.4162/nrp.2013.7.5.373.CrossRefGoogle Scholar
  37. 37.
    Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology.  https://doi.org/10.1016/S0023-6438(95)80008-5.CrossRefGoogle Scholar
  38. 38.
    Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine.  https://doi.org/10.1016/S0891-5849(98)00315-3.CrossRefGoogle Scholar
  39. 39.
    Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods.  https://doi.org/10.1016/0022-1759(83)90303-4.CrossRefGoogle Scholar
  40. 40.
    Spector, D. L., Goldman, R. D., & Leinwand, L. A. (1998). Cells: a laboratory manual. Volume 1, Volume 1,. Plainview, N.Y.: Cold Spring Harbor Laboratory Press.Google Scholar
  41. 41.
    Kasibhatla, S. (2006). Staining of suspension cells with Hoechst 33258 to detect apoptosis. Cold Spring Harbor Protocols.  https://doi.org/10.1101/pdb.prot4492.Google Scholar
  42. 42.
    Baracca, A., Sgarbi, G., Solaini, G., & Lenaz, G. (2003). Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis. Biochimica et Biophysica Acta - Bioenergetics.  https://doi.org/10.1016/S0005-2728(03)00110-5.CrossRefGoogle Scholar
  43. 43.
    Joerger, R., Klaus, T., & Granqvist, C. G. (2000). Biologically produced silver-carbon composite materials for optically functional thin-film coatings. Advanced Materials.  https://doi.org/10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O.
  44. 44.
    Klaus, T., Joerger, R., Olsson, E., & Granqvist, C.-G. (2002). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences.  https://doi.org/10.1073/pnas.96.24.13611.CrossRefGoogle Scholar
  45. 45.
    Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., … Sastry, M. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Letters. doi: https://doi.org/10.1021/nl0155274.CrossRefGoogle Scholar
  46. 46.
    Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 28(4), 313–318.  https://doi.org/10.1016/S0927-7765(02)00174-1.CrossRefGoogle Scholar
  47. 47.
    He, Y., Du, Z., Ma, S., Cheng, S., Jiang, S., Liu, Y., … Zheng, X. (2016). Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using Dimocarpus Longan Lour. peel extract. Nanoscale Research Letters. doi: https://doi.org/10.1186/s11671-016-1511-9.
  48. 48.
    Ahmed, M. J., Murtaza, G., Mehmood, A., & Bhatti, T. M. (2015). Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: characterization and antibacterial activity. Materials Letters.  https://doi.org/10.1016/j.matlet.2015.03.143.CrossRefGoogle Scholar
  49. 49.
    Gurunathan, S., Raman, J., Abd Malek, S. N., John, P. A., & Vikineswary, S. (2013). Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. International Journal of Nanomedicine. doi: https://doi.org/10.2147/IJN.S51881.
  50. 50.
    Kanipandian, N., & Thirumurugan, R. (2014). A feasible approach to phyto-mediated synthesis of silver nanoparticles using industrial crop Gossypium hirsutum (cotton) extract as stabilizing agent and assessment of its in vitro biomedical potential. Industrial Crops and Products, 55, 1–10.  https://doi.org/10.1016/j.indcrop.2014.01.042.CrossRefGoogle Scholar
  51. 51.
    Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science. doi: https://doi.org/10.1016/j.jcis.2004.02.012.CrossRefGoogle Scholar
  52. 52.
    Venkatpurwar, V., & Pokharkar, V. (2011). Green synthesis of silver nanoparticles using marine polysaccharide: study of in-vitro antibacterial activity. Materials Letters.  https://doi.org/10.1016/j.matlet.2010.12.057.CrossRefGoogle Scholar
  53. 53.
    Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., & Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry. doi: https://doi.org/10.1039/b615357g.CrossRefGoogle Scholar
  54. 54.
    Tripathy, A., Raichur, A. M., Chandrasekaran, N., Prathna, T. C., & Mukherjee, A. (2010). Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. Journal of Nanoparticle Research.  https://doi.org/10.1007/s11051-009-9602-5.CrossRefGoogle Scholar
  55. 55.
    Whiteman, S. C., Yang, Y., Jones, J. M., & Spiteri, M. A. (2008). FTIR spectroscopic analysis of sputum: preliminary findings on a potential novel diagnostic marker for COPD. Therapeutic Advances in Respiratory Disease, 2(1), 23–31.  https://doi.org/10.1177/1753465807087972.CrossRefGoogle Scholar
  56. 56.
    Jain, N., Bhargava, A., Majumdar, S., Tarafdar, J. C., & Panwar, J. (2011). Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale.  https://doi.org/10.1039/c0nr00656d.CrossRefGoogle Scholar
  57. 57.
    Ghaseminezhad, S. M., Hamedi, S., & Shojaosadati, S. A. (2012). Green synthesis of silver nanoparticles by a novel method: comparative study of their properties. Carbohydrate Polymers.  https://doi.org/10.1016/j.carbpol.2012.03.030.CrossRefGoogle Scholar
  58. 58.
    Abdel-Aziz, M. S., Shaheen, M. S., El-Nekeety, A. A., & Abdel-Wahhab, M. A. (2014). Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. Journal of Saudi Chemical Society.  https://doi.org/10.1016/j.jscs.2013.09.011.CrossRefGoogle Scholar
  59. 59.
    Kumar, K. G., Avinash, B. S., Rahimi-Gorji, M., & Alarifi, I. M. (2019). Optical and electrical properties of Ti1-XSnXO2 nanoparticles. Journal of Molecular Liquids, 293, 111556.  https://doi.org/10.1016/j.molliq.2019.111556.CrossRefGoogle Scholar
  60. 60.
    Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts. Saudi Journal of Biological Sciences. doi: https://doi.org/10.1016/j.sjbs.2014.07.004.CrossRefGoogle Scholar
  61. 61.
    A. Alshaye, N., M. Elobeid, M., H.M. Alkha, D., & E. Mohamme, A. (2016). Characterization of biogenic silver nanoparticles by Salvadora persica leaves extract and its application against some MDR pathogens E. coli and S. aureus. Research Journal of Microbiology. doi: https://doi.org/10.3923/jm.2017.74.81.CrossRefGoogle Scholar
  62. 62.
    Kanipandian, N., Kannan, S., Ramesh, R., Subramanian, P., & Thirumurugan, R. (2014). Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier. Materials Research Bulletin.  https://doi.org/10.1016/j.materresbull.2013.09.016.CrossRefGoogle Scholar
  63. 63.
    Rai, A., Singh, A., Ahmad, A., & Sastry, M. (2006). Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir.  https://doi.org/10.1021/la052055q.CrossRefGoogle Scholar
  64. 64.
    Mittal, A. K., Bhaumik, J., Kumar, S., & Banerjee, U. C. (2014). Biosynthesis of silver nanoparticles: elucidation of prospective mechanism and therapeutic potential. Journal of Colloid and Interface Science, 415, 39–47.  https://doi.org/10.1016/j.jcis.2013.10.018.CrossRefGoogle Scholar
  65. 65.
    Kumar, B., Smita, K., Seqqat, R., Benalcazar, K., Grijalva, M., & Cumbal, L. (2016). In vitro evaluation of silver nanoparticles cytotoxicity on hepatic cancer (Hep-G2) cell line and their antioxidant activity: green approach for fabrication and application. Journal of Photochemistry and Photobiology B: Biology.  https://doi.org/10.1016/j.jphotobiol.2016.03.011.CrossRefGoogle Scholar
  66. 66.
    Selvam, K., Sudhakar, C., Govarthanan, M., Thiyagarajan, P., Sengottaiyan, A., Senthilkumar, B., & Selvankumar, T. (2017). Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) Miers and evaluate its antibacterial, antioxidant potential . Journal of Radiation Research and Applied Sciences. doi: https://doi.org/10.1016/j.jrras.2016.02.005.CrossRefGoogle Scholar
  67. 67.
    Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., et al. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine.  https://doi.org/10.1016/j.nano.2006.12.001.CrossRefGoogle Scholar
  68. 68.
    Karthik, K., Dhanuskodi, S., Gobinath, C., & Sivaramakrishnan, S. (2015). Microwave-assisted synthesis of CdO-ZnO nanocomposite and its antibacterial activity against human pathogens. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy.  https://doi.org/10.1016/j.saa.2014.11.079.CrossRefGoogle Scholar
  69. 69.
    Hoskote Anand, K. K., & Mandal, B. K. (2015). Activity study of biogenic spherical silver nanoparticles towards microbes and oxidants. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy.  https://doi.org/10.1016/j.saa.2014.07.013.CrossRefGoogle Scholar
  70. 70.
    Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances.  https://doi.org/10.1016/j.biotechadv.2008.09.002.CrossRefGoogle Scholar
  71. 71.
    Justin Packia Jacob, S., Finub, J. S., & Narayanan, A. (2012). Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids and Surfaces B: Biointerfaces.  https://doi.org/10.1016/j.colsurfb.2011.11.001.CrossRefGoogle Scholar
  72. 72.
    Thakore, S. I., Nagar, P. S., Jadeja, R. N., Thounaojam, M., Devkar, R. V., & Rathore, P. S. (2019). Sapota fruit latex mediated synthesis of Ag, Cu mono and bimetallic nanoparticles and their in vitro toxicity studies. Arabian Journal of Chemistry. doi: https://doi.org/10.1016/j.arabjc.2014.12.042.CrossRefGoogle Scholar
  73. 73.
    Manke, A., Wang, L., & Rojanasakul, Y. (2013). Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Research International.  https://doi.org/10.1155/2013/942916.CrossRefGoogle Scholar
  74. 74.
    Aadil, K. R., Pandey, N., Mussatto, S. I., & Jha, H. (2019). Green synthesis of silver nanoparticles using acacia lignin, their cytotoxicity, catalytic, metal ion sensing capability and antibacterial activity. Journal of Environmental Chemical Engineering.  https://doi.org/10.1016/j.jece.2019.103296.CrossRefGoogle Scholar
  75. 75.
    Azandeh, S. S., Abbaspour, M., Khodadadi, A., Khorsandi, L., Orazizadeh, M., & Heidari-Moghadam, A. (2017). Anticancer activity of curcumin-loaded PLGA nanoparticles on PC3 prostate cancer cells. Iranian Journal of Pharmaceutical Research. Google Scholar
  76. 76.
    Roessner, A., Kuester, D., Malfertheiner, P., & Schneider-Stock, R. (2008). Oxidative stress in ulcerative colitis-associated carcinogenesis. Pathology Research and Practice.  https://doi.org/10.1016/j.prp.2008.04.011.CrossRefGoogle Scholar
  77. 77.
    Behboodi, S., Baghbani-Arani, F., Abdalan, S., & Sadat Shandiz, S. A. (2019). Green engineered biomolecule-capped silver nanoparticles fabricated from Cichorium intybus extract: in vitro assessment on apoptosis properties toward human breast cancer (MCF-7) cells. Biological Trace Element Research.  https://doi.org/10.1007/s12011-018-1392-0.CrossRefGoogle Scholar
  78. 78.
    Akther, T., Mathipi, V., Kumar, N. S., Davoodbasha, M., & Srinivasan, H. (2019). Fungal-mediated synthesis of pharmaceutically active silver nanoparticles and anticancer property against A549 cells through apoptosis. Environmental Science and Pollution Research.  https://doi.org/10.1007/s11356-019-04718-w.CrossRefGoogle Scholar
  79. 79.
    Sivagami, G., Vinothkumar, R., Preethy, C. P., Riyasdeen, A., Akbarsha, M. A., Menon, V. P., & Nalini, N. (2012). Role of hesperetin (a natural flavonoid) and its analogue on apoptosis in HT-29 human colon adenocarcinoma cell line - a comparative study. Food and Chemical Toxicology.  https://doi.org/10.1016/j.fct.2011.11.038.CrossRefGoogle Scholar
  80. 80.
    Kim, C. G., Castro-Aceituno, V., Abbai, R., Lee, H. A., Simu, S. Y., Han, Y., et al. (2018). Caspase-3/MAPK pathways as main regulators of the apoptotic effect of the phyto-mediated synthesized silver nanoparticle from dried stem of Eleutherococcus senticosus in human cancer cells. Biomedicine & Pharmacotherapy, 99, 128–133.  https://doi.org/10.1016/j.biopha.2018.01.050.CrossRefGoogle Scholar
  81. 81.
    Plackal Adimuriyil George, B., Kumar, N., Abrahamse, H., & Ray, S. S. (2018). Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells. Scientific Reports.  https://doi.org/10.1038/s41598-018-32480-5.
  82. 82.
    Wang, C., Mathiyalagan, R., Kim, Y. J., Castro-Aceituno, V., Singh, P., Ahn, S., et al. (2016). Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. International Journal of Nanomedicine.  https://doi.org/10.2147/IJN.S97181.
  83. 83.
    Fröhlich, E. (2012). The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International Journal of Nanomedicine.  https://doi.org/10.2147/IJN.S36111.
  84. 84.
    Rahaman Mollick, M. M., Bhowmick, B., Mondal, D., Maity, D., Rana, D., Dash, S. K., … Chattopadhyay, D. (2014). Anticancer (in vitro) and antimicrobial effect of gold nanoparticles synthesized using Abelmoschus esculentus (L.) pulp extract via a green route. RSC Advances. doi: https://doi.org/10.1039/c4ra07285e.CrossRefGoogle Scholar
  85. 85.
    Jeyaraj, M., Rajesh, M., Arun, R., MubarakAli, D., Sathishkumar, G., Sivanandhan, G., et al. (2013). An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids and Surfaces B: Biointerfaces.  https://doi.org/10.1016/j.colsurfb.2012.09.042.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rajkumar Krishnasamy Sekar
    • 1
  • Arun Sridhar
    • 1
  • Balaji Perumalsamy
    • 2
  • Dinesh Babu Manikandan
    • 1
  • Thirumurugan Ramasamy
    • 1
    • 2
    Email author
  1. 1.Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life SciencesBharathidasan UniversityTiruchirappalliIndia
  2. 2.UGC-National Centre for Alternatives to Animal Experiments (NCAAE)Bharathidasan UniversityTiruchirappalliIndia

Personalised recommendations