Advertisement

Chemical Mediated Synthesis of Polyaniline/Tungstenoxide (PANI/WO3) Nanocomposites and Their Antibacterial Activity Against Clinical Pathogenic Bacteria

  • B. ManjunathaEmail author
  • Arjun N. Shetty
  • S. Kaveri
  • Sundar S. Mety
  • K. C. Anjaneya
  • Ramakrishna Reddy
  • Sangshetty Kalyane
Article
  • 11 Downloads

Abstract

Polyaniline and tungsten oxide (PANI/WO3)-doped nanocomposites were synthesised by in situ chemical oxidation technique using different weight percentage of WO3 (10%, 30% and 50%), and the polymerization of PANI was carried out by using ammonium persulphate as an oxidising agent. These nanocomposites are characterized by physical methods, viz., Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The X-ray pattern confirmed that the formation of polyaniline and SEM micrographs exhibited agglomeration and showed that WO3 particles have a strong effect on the morphology of composites with average grain sizes of 10–20 nm. FTIR spectra revealed the strong bonding between PANI and WO3 particles. Further, these nanocomposites doped with 10% (P1), 30% (P3) and 50% (P5) of WO3 were tested for their antibacterial activity against pathogenic bacteria, viz., Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa and Salmonella typhimurium. Results revealed that these nanocomposites had shown potential antibacterial activity against all the tested pathogenic strains which was confirmed by clear zone of inhibition.

Keywords

Polyaniline Nanocomposite Antibacterial activity Tungsten oxide 

Abbreviations

PANI

Polyaniline

APS

Ammonium persulphate

WO3

Tungsten oxide

SEM

Scanning electron microscopy

XRD

X-Ray diffraction

FTIR

Fourier transmission infrared

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving humans and animals statement

None.

Informed consent

None.

Funding statement

None.

Supplementary material

12668_2019_679_MOESM1_ESM.docx (1.6 mb)
Supplementary Figure 1 (DOCX 1688 kb)

References

  1. 1.
    Mallikarjuna, N. N., Venkataraman, A., & Aminabhavi, T. M. (2004). A study on γ-Fe2O3 loaded poly (methyl methacrylate) nanocomposites. Journal of Applied Polymer Science, 94(6), 2551–2554.CrossRefGoogle Scholar
  2. 2.
    Murugendrappa, M. V., & Prasad, M. A. (2006). Dielectric spectroscopy of polypyrrole–γ–Fe2O3 composites. Materials Research Bulletin, 41(7), 1364–1369.CrossRefGoogle Scholar
  3. 3.
    Raghavendra, S. C., Khasim, S., Revanasiddappa, M., Prasad, M. A., & Kulkarni, A. B. (2003). Synthesis, characterization and low frequency ac conduction of polyaniline/fly ash composites. Bulletin of Materials Science, 26(7), 733–739.CrossRefGoogle Scholar
  4. 4.
    MacDiarmid, A. G., & Epstein, A. J. (1989). Polyanilines: a novel class of conducting polymers. Faraday Discussions of the Chemical Society, 88, 317–332.CrossRefGoogle Scholar
  5. 5.
    Green, A. G., & Woodhead, A. E. (1912). CXVII-aniline-black and allied compounds. Part II. Journal of the Chemical Society, Transactions, 101, 1117–1123.CrossRefGoogle Scholar
  6. 6.
    Molapo, K. M., Ndangili, P. M., Ajayi, R. F., Mbambisa, G., Mailu, S. M., Njomo, N., Masikini, M., Baker, P., & Iwuoha, E. I. (2012). Electronics of conjugated polymers (I): polyaniline. International Journal of Electrochemical Science, 7(12), 11859–11875.Google Scholar
  7. 7.
    Chiang, C. K., Druy, M. A., Gau, S. C., Heeger, A. J., Louis, E. J., MacDiarmid, A. G., Park, Y. W., & Shirakawa, H. (1978). Synthesis of highly conducting films of derivatives of polyacetylene,(CH) x. Journal of the American Chemical Society, 100(3), 1013–1015.CrossRefGoogle Scholar
  8. 8.
    Jotiram, K. P., Prasad, R. G., Jakka, V. S., Aparna, R. S., & Phani, A. R. (2012). Antibacterial activity of nanostructured polyaniline combined with mupirocin. Nano Biomedicine & Engineering, 4(3), 144–179.CrossRefGoogle Scholar
  9. 9.
    Palaniappan, S., & John, A. (2008). Polyaniline materials by emulsion polymerization pathway. Progress in Polymer Science, 33(7), 732–758.CrossRefGoogle Scholar
  10. 10.
    MacDiarmid, A. G. (2001). “Synthetic metals”: a novel role for organic polymers (Nobel lecture). Angewandte Chemie International Edition, 40(14), 2581–2590.CrossRefGoogle Scholar
  11. 11.
    Devendrappa, H., Rao, U. S., & Prasad, M. A. (2006). Study of dc conductivity and battery application of polyethylene oxide/polyaniline and its composites. Journal of Power Sources, 155(2), 368–374.CrossRefGoogle Scholar
  12. 12.
    Sinha, R. (2002). Outlines of polymer technology (Vol. 93). New Delhi: Prentice Hall of India Private Limited.Google Scholar
  13. 13.
    Lagashetty, A., Vijayanand, H., Basavaraja, S., Bedre, M. D., & Venkataraman, A. (2010). Preparation, characterization, and thermal studies of γ-Fe2O3 and CuO dispersed polycarbonate nanocomposites. Journal of Thermal Analysis and Calorimetry, 99(2), 577–581.CrossRefGoogle Scholar
  14. 14.
    Jiang, L. Y., Leu, C. M., & Wei, K. H. (2002). Layered silicates/fluorinated polyimide nanocomposites for advanced dielectric materials applications. Advanced Materials, 14(6), 426–429.CrossRefGoogle Scholar
  15. 15.
    Caruso, F. (2001). Nanoengineering of particle surfaces. Advanced Materials, 13(1), 11–22.CrossRefGoogle Scholar
  16. 16.
    Leu, C. M., Wu, Z. W., & Wei, K. H. (2002). Synthesis and properties of covalently bonded layered silicates/polyimide (BTDA-ODA) nanocomposites. Chemistry of Materials, 14(7), 3016–3021.CrossRefGoogle Scholar
  17. 17.
    Lagashetty, A., Bhavikatti, A. M., Mahadevi, B., & Kulkarni, S. (2010). Synthesis and characterization of BaTiO3 by thermal decomposition of metal oxalate precursors. International Journal of Eletronics Engineering Research, 2(4), 581.Google Scholar
  18. 18.
    Parvatikar, N., Jain, S., Kanamadi, C. M., Chougule, B. K., Bhoraskar, S. V., & Prasad, M. A. (2007). Humidity sensing and electrical properties of polyaniline/cobalt oxide composites. Journal of Applied Polymer Science, 103(2), 653–658.CrossRefGoogle Scholar
  19. 19.
    Mallikarjuna, N. N., Manohar, S. K., Kulkarni, P. V., Venkataraman, A., & Aminabhavi, T. M. (2005). Novel high dielectric constant nanocomposites of polyaniline dispersed with γ-Fe2O3 nanoparticles. Journal of Applied Polymer Science, 97(5), 1868–1874.CrossRefGoogle Scholar
  20. 20.
    Parvatikar, N., & Ambika Prasad, M. V. (2006). Frequency-dependent conductivity and dielectric permittivity of polyaniline/CeO2 composites. Journal of Applied Polymer Science, 100(2), 1403–1405.CrossRefGoogle Scholar
  21. 21.
    Patil, S. D., Raghavendra, S. C., Revansiddappa, M., Narsimha, P., & Prasad, M. A. (2007). Synthesis, transport and dielectric properties of polyaniline/Co3O4 composites. Bulletin of Materials Science, 30(2), 89–92.CrossRefGoogle Scholar
  22. 22.
    Bedre, M. D., Basavaraja, S., Salwe, B. D., Shivakumar, V., Arunkumar, L., & Venkataraman, A. (2009). Preparation and characterization of Pani and Pani-Ag nanocomposites via interfacial polymerization. Polymer Composites, 11, 1668–1677.CrossRefGoogle Scholar
  23. 23.
    MacDiarmid, A. G. (2001). Nobel Lecture: “Synthetic metals”: a novel role for organic polymers. Reviews of Modern Physics, 73(3), 701.CrossRefGoogle Scholar
  24. 24.
    Stejskal, J., Kratochvil, P., & Jenkins, A. D. (1996). The formation of polyaniline and the nature of its structures. Polymer, 37(2), 367–369.CrossRefGoogle Scholar
  25. 25.
    Zuo, F., Angelopoulos, M., MacDiarmid, A. G., & Epstein, A. J. (1987). Transport studies of protonated emeraldine polymer: a granular polymeric metal system. Physical Review B, 36(6), 3475.CrossRefGoogle Scholar
  26. 26.
    Patel, R. G., Solanki, G. K., Prajapati, S. M., & Oza, A. T. (2005). Kuhn periodicity in oligoanilines and oligoaniline–iodine complexes. Molecular Crystals and Liquid Crystals, 442(1), 167–180.CrossRefGoogle Scholar
  27. 27.
    Seshadri DT, Bhat NV (2005) Use of polyaniline as an antimicrobial agent in textiles.Google Scholar
  28. 28.
    Shi, N., Guo, X., Jing, H., Gong, J., Sun, C., & Yang, K. (2006). Antimicrobial effect of the conducting PANI. Journal of Materials Science and Technology, 44(3), 289–290.Google Scholar
  29. 29.
    Mu, J. L., Fan, W. J., Shan, S. Y., Hu, T. W., Wang, Y. M., & Jia, Q. M. (2013). The effects of natural dopant acids on morphologies and antibacterial activity of polyaniline. Advanced Materials Research, 650, 249–252.CrossRefGoogle Scholar
  30. 30.
    Refat, M. S., Elfalaky, A., & Elesh, E. (2011). Spectroscopic and physical measurements on charge-transfer complexes: interactions between norfloxacin and ciprofloxacin drugs with picric acid and 3, 5-dinitrobenzoic acid acceptors. Journal of Molecular Structure, 990(1-3), 217–226.CrossRefGoogle Scholar
  31. 31.
    Kucekova, Z., Kasparkova, V., Humpolicek, P., Sevcikova, P., & Stejskal, J. (2013). Antibacterial properties of polyaniline-silver films. Chemical Papers, 67(8), 1103–1108.CrossRefGoogle Scholar
  32. 32.
    Collin, C. H., Lyne, P. M., & Grange, J. M. (1985). Microbiological methods (7th ed.). Butter worth.Google Scholar
  33. 33.
    Bankalgi, S. C., Londonkar, R. L., Madire, U., & Tukappa, N. A. (2016). Biosynthesis, characterization and antibacterial effect of phenolics-coated silver nanoparticles using Cassia javanica L. Journal of Cluster Science, 27(4), 1485–1497.CrossRefGoogle Scholar
  34. 34.
    Inamdar, H. K., Shetty, A. N., Kaveri, S., Sannakki, B., & Ambikaprasad, M. V. (2018). Aloe vera (L.) Burm. F assisted green synthesis and biological applications of Y2O3:Mg2+ nanocomposites. Journal of Cluster Science, 29(4), 805–813.CrossRefGoogle Scholar
  35. 35.
    Alves, T. M., Silva, A. F., Brandão, M., Grandi, T. S., Smânia, E. D., Smânia Júnior, A., & Zani, C. L. (2000). Biological screening of Brazilian medicinal plants. Memórias do Instituto Oswaldo Cruz, 95(3), 367–373.CrossRefGoogle Scholar
  36. 36.
    Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, ul Hasan MM (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annals of Microbiology 60(1):75-80.Google Scholar
  37. 37.
    Muthusankar, E., Kumar, S. V., Rajagopalan, N., & Ragupathy, D. (2018). Synthesis and characterization of Co-polymer nanocomposite film and its enhanced antimicrobial behaviour. BioNanoScience, 8(4), 1008–1013.CrossRefGoogle Scholar
  38. 38.
    Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–1249.CrossRefGoogle Scholar
  39. 39.
    Park, E. J., & Park, K. (2009). Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicology Letters, 184(1), 18–25.CrossRefGoogle Scholar
  40. 40.
    Dobrucka, R., & Długaszewska, J. (2016). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences, 23(4), 517–523.CrossRefGoogle Scholar
  41. 41.
    Parveen, S., Misra, R., & Sahoo, S. K. (2012). Nanomedicine: Nanotechnology, Biology, and Medicine, 8, 147–166.CrossRefGoogle Scholar
  42. 42.
    Salton, M. R. J., Kim, K. S., & Baron, S. (1996). Medical microbiology (fourth ed.). Galveston: University of Texas Medical Branch.Google Scholar
  43. 43.
    Dhivya, C., Vandarkuzhali, S. A. A., & Radha, N. (2015). Antimicrobial activities of nanostructured polyanilines doped with aromatic nitro compounds. Arabian Journal of Chemistry.Google Scholar
  44. 44.
    Gizdavic-Nikolaidis, M. R., Bennett, J. R., Swift, S., Easteal, A. J., & Ambrose, M. (2011). Broad spectrum antimicrobial activity of functionalized polyanilines. Acta Biomaterialia, 7(12), 4204–4209.CrossRefGoogle Scholar
  45. 45.
    Savithramma, N., Rao, M. L., Rukmini, K., & Devi, P. S. (2011). Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. International Journal of Chemtech Research, 3(3), 1394–1402.Google Scholar
  46. 46.
    Raliya, R., Biswas, P., & Tarafdar, J. C. (2015). TiO2 nanoparticle biosynthesis and its physiological effect on Mung bean (Vigna radiata L.). Biotechnology Reports, 5, 22–26.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • B. Manjunatha
    • 1
    Email author
  • Arjun N. Shetty
    • 2
  • S. Kaveri
    • 3
  • Sundar S. Mety
    • 3
  • K. C. Anjaneya
    • 4
  • Ramakrishna Reddy
    • 2
    • 5
  • Sangshetty Kalyane
    • 1
  1. 1.Department of PhysicsBheemanna Khandre Institute of TechnologyBidarIndia
  2. 2.Department of P. G. Studies in BotanySharnbasva UniversityKalaburagiIndia
  3. 3.Department of BotanyGulbarga UniversityKalaburagiIndia
  4. 4.Department of ChemistryKLE’s S. Nijalingappa collegeBangaloreIndia
  5. 5.Department of Studies and Research in ZoologySharnbasweshwara College of ScienceKalaburagiIndia

Personalised recommendations