Advertisement

BioNanoScience

, Volume 9, Issue 4, pp 909–917 | Cite as

Comparative Analysis of the Effect of Gene-Activated Grafts Carrying a PBUD-VEGF165A-BMP2 Plasmid on Bone Regeneration in a Rat Femur Defect Model

  • Margarita N. Zhuravleva
  • Marsel R. Khaliullin
  • Ruslan F. Masgutov
  • Ilya Y. Bozo
  • Albert A. RizvanovEmail author
  • Roman V. Deev
Article
  • 23 Downloads

Abstract

Delayed union and non-union are widespread complications of bone fracture healing which are worse in cases of concomitant chronic diseases (diabetes mellitus, alcoholism, etc.). Osteonecrosis of different etiology is another cause of persistent bone defects. In the current research, we tested gene-activated grafts (GAGs) carrying dual expression cassette plasmid constructs encoding human vascular endothelial growth factor A (VEGF-A) and bone morphogenetic protein 2 (BMP2) genes. We modeled a thighbone diaphyseal defect on male Wistar rats and tested either GAG based on collagen and hydroxyapatite granules (Collapol CP-3) or GAG octacalcium phosphate (OCP) grafts. Histological examination revealed significant increases in vascularization and bone tissue formation in the GAG Collapol CP-3 graft experimental group, while neither the OCP nor the GAG OCP group showed a positive effect on callus formation. We conclude that GAG Collapol CP-3 bone grafts are a potential therapeutic solution for bone tissue regeneration and further clinical studies are required.

Keywords

Gene therapy Traumatology Plasmid Osteogenesis Angiogenesis Bone morphogenetic protein Vascular endothelial growth factor 

Notes

Acknowledgments

The work was performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. Some of the experiments were conducted using the equipment of the Interdisciplinary Center for Collective Use of Kazan Federal University, Interdisciplinary Center for Analytical Microscopy, and Pharmaceutical Research and Education Center, Kazan (Volga region) Federal University, Kazan, Russia. Work was funded by the Grant of the President of the Russian Federation for state support of the leading scientific schools of the Russian Federation НШ-3076.2018.4. Albert A. Rizvanov was supported by state assignment 20.5175.2017/6.7 and 17.9783.2017/8.9 of the Ministry of Science and Higher Education of Russian Federation.

Compliance with Ethical Standards

In vivo experiments were approved by the Local Ethical Committee of Kazan Federal University (Protocol No. 3 dated 23 March 2017).

Conflict of Interest

None.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Funding Statement

None.

References

  1. 1.
    Beamer, B., Hettrich, C., & Lane, J. (2010). Vascular endothelial growth factor: an essential component of angiogenesis and fracture healing. HSS Journal, 6(1), 85–94.CrossRefGoogle Scholar
  2. 2.
    Bonadio, J., Smiley, E., Patil, P., & Goldstein, S. (1999). Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nature Medicine, 5(7), 753–759.CrossRefGoogle Scholar
  3. 3.
    Byrne, A. M., Bouchier-Hayes, D. J., & Harmey, J. H. (2005). Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). Journal of Cellular and Molecular Medicine, 9(4), 777–794.CrossRefGoogle Scholar
  4. 4.
    Demidova-Rice, T. N., Hamblin, M. R., & Herman, I. M. (2012). Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery. Advances in Skin & Wound Care, 25(8), 349–370.CrossRefGoogle Scholar
  5. 5.
    Fei, Q.M., Jiang X.X., Chen, T.Y., Li, J., Murakami,H., Tsai, K.J., Hutton, W.C. (2006) Changes with Age and the effect of recombinant human BMP 2 on Proteoglycan and Collagen Gene Expression in Rabbit Anulus Fibrosus Cells. Acta Biochimica et Biophysica Sinica 38(11):773-779CrossRefGoogle Scholar
  6. 6.
    Isaev, A. A., Kiselev, S. L., Deev, R. V., Bozo, I. Y., & Filonenko, E. S. (2011). A biocomposite for regeneration of injured tissue and organs, a kit for making the biocomposite, a method of making the biocomposite and a method of treating inquiries. Patent WO2013100818A2.Google Scholar
  7. 7.
    Kamal, D., Trăistaru, R., Alexandru, D. O., Grecu, D. C., & Mogoantă, L. (2013). Epidemiologic study of avascular necrosis of the femoral head. Current Health Sciences Journal, 39(3).Google Scholar
  8. 8.
    Kang, Y., Ren, L., & Yang, Y. (2014). Engineering vascularized bone grafts by integrating a biomimetic periosteum and β-TCP scaffold. ACS Applied Materials & Interfaces, 6(12), 9622–9633.CrossRefGoogle Scholar
  9. 9.
    Lu, C., Hansen, E., Sapozhnikova, A., Hu, D., Miclau, T., & Marcucio, R. S. (2008). Effect of age on vascularization during fracture repair. Journal of Orthopaedic Research: official publication of the Orthopaedic Research Society, 26(10), 1384–1389.CrossRefGoogle Scholar
  10. 10.
    Mali, S. (2013). Delivery systems for gene therapy. Indian Journal of Human Genetics, 19(1), 3–8.CrossRefGoogle Scholar
  11. 11.
    McKay, W. F., Peckham, S. M., & Badura, J. M. (2007). A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). International Orthopaedics, 31(6), 729–734.CrossRefGoogle Scholar
  12. 12.
    Morshed, S. (2014). Current options for determining fracture union. Advances in Medicine, 2014, 708574.Google Scholar
  13. 13.
    Murphey, M. D., Foreman, K. L., Klassen-Fischer, M. K., Fox, M. G., Chung, E. M., & Kransdorf, M. J. (2014). From the radiologic pathology archives imaging of osteonecrosis: radiologic-pathologic correlation. Radiographics, 34(4), 1003–1028.CrossRefGoogle Scholar
  14. 14.
    Park, J.Y., Shim, J. H., Choi, S.A., Jang, J., Kim, M., Lee, S. H., Cho, D.W. (2015) 3D printing technology to control BMP 2 and VEGF delivery spatially and temporally to promote large-volume bone regeneration. Journal of Materials Chemistry B 3(27):5415-5425CrossRefGoogle Scholar
  15. 15.
    Perlman, M., & Thordarson, D. (1999). Ankle fusion in a high risk population: an assessment of nonunion risk factors. Foot & Ankle International, 20, 491–496.CrossRefGoogle Scholar
  16. 16.
    Rodríguez-Évora, M. , Delgado, A. , Reyes, R. , Hernández-Daranas, A. , Soriano, I. , San Román, J. , Évora, C. (2013). Osteogenic effect of local, long versus short term BMP-2 delivery from a novel SPU–PLGA–βTCP concentric system in a critical size defect in rats. European Journal of Pharmaceutical Sciences 49(5):873-884CrossRefGoogle Scholar
  17. 17.
    Rosenberg, A.M., Hunt, D.W., Petty, R.E. (1983). The binding of DNA to native type II collagen. J Rheumatol., 10(6), 925-9.Google Scholar
  18. 18.
    Saran, U., Gemini Piperni, S., & Chatterjee, S. (2014). Role of angiogenesis in bone repair. Archives of Biochemistry and Biophysics, 1(561), 109–117.CrossRefGoogle Scholar
  19. 19.
    Suzuki, O. (2013). Octacalcium phosphate (OCP)-based bone substitute materials. Japanese Dental Science Review, 49(2), 58–71.CrossRefGoogle Scholar
  20. 20.
    Sykaras, N., & Opperman, L. A. (2003). Bone morphogenetic proteins (BMPs): how do they function and what can they offer the clinician? Journal of Oral Science, 45(2), 57–73.CrossRefGoogle Scholar
  21. 21.
    Yuan, H., Fernandes, H., Habibovic, P., de Boer, J., Barradas, A. M., et al. (2010). Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proceedings of the National Academy of Sciences of the United States of America, 107, 13614–13619.CrossRefGoogle Scholar
  22. 22.
    Zhuravleva, M. N., Khaliullin, M. R., Masgutov, R. F., Deev, R. V., & Rizvanov, A. A. (2017). Recombinant plasmid DNA construct encoding combination of vegf165 and bmp2 cDNAs stimulates osteogenesis and angiogenesis in vitro. BioNanoScience, 7(2), 288–293.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kazan Federal UniversityKazanRussia
  2. 2.A.I. Burnazyan Federal Medical Biophysical CenterFMBA of RussiaMoscowRussia
  3. 3.Histograft, LLCMoscowRussia
  4. 4.Ryazan State Medical UniversityRyazanRussia
  5. 5.Republican Clinical Hospital of the Ministry of Health of the Republic of TatarstanKazanRussia

Personalised recommendations