Advertisement

BioNanoScience

, Volume 9, Issue 4, pp 821–832 | Cite as

Structural Effects of the Syntheticcobalt–Manganese-Zinc Ferrite Nanoparticles (Co0.3Mn0.2Zn0.5Fe2O4 NPs) on DNA and its Antiproliferative Effect on T47Dcells

  • Azadeh HekmatEmail author
  • Ali Akbar Saboury
Article
  • 36 Downloads

Abstract

The purpose of this investigation was to examine the effect of Cobalt-Manganese-Zinc Ferrite nanoparticles (Co0.3Mn0.2Zn0.5Fe2O4 NPs) on DNA structure along with its inhibitory role in the growth of T47D cells. This investigation performed with ultraviolet and fluorescence spectroscopy, zeta potential investigation, circular dichroism (CD) spectroscopy, as well as MTT assay, DAPI staining, and flow cytometry analyses. The ultraviolet and fluorescence results indicated that Co0.3Mn0.2Zn0.5Fe2O4 NPs could form a complex via non-intercalative mechanism. The thermodynamics parameters exhibited that Co0.3Mn0.2Zn0.5Fe2O4 NPs the hydrophobic force plays a role in this interaction. The CD data confirmed that Co0.3Mn0.2Zn0.5Fe2O4 NPs induced the transition of DNA conformation to a compact molecular form so-called Ψ-form, furthermore, DNA was relatively thermally stable in the presence of Co0.3Mn0.2Zn0.5Fe2O4 NPs. The anticancer property of Co0.3Mn0.2Zn0.5Fe2O4 NPs via MTT assay, DAPI staining and flow cytometry analyses verified that this nanoparticle can reduce T47D cells proliferation. Based on this investigation Co0.3Mn0.2Zn0.5Fe2O4 NPs could change the structure of DNA and can affect the cell viability. This study can offer an innovative strategy for designing a new anti-tumor agent.

Keywords

Cobalt–manganese-zinc ferrite nanoparticles DNA Ψ-form DNA Spectroscopy T47D cells 

Notes

Acknowledgments

We thank Ms. Mina Evini at Institute of Biochemistry and Biophysics of the University of Tehran for technical support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Funding Statement

None.

References

  1. 1.
    Prévot, M., & Dunlop, D. (2001). Louis Néel: Forty years of magnetism. Physics of the Earth and Planetary Interiors, 126, 3–6.Google Scholar
  2. 2.
    Tietze, R., Zaloga, J., Unterweger, H., Lyer, S., Friedrich, R. P., Janko, C., Pöttler, M., Dürr, S., & Alexiou, C. (2015). Magnetic nanoparticle-based drug delivery for cancer therapy. Biochemical and Biophysical Research Communications, 468, 463–470.Google Scholar
  3. 3.
    Phung, D. C., Nguyen, H. T., Tran, T. T. P., Jin, S. G., Yong, C. S., Truong, D. H., Tran, T. H., & Kim, J. O. (2019). Combined hyperthermia and chemotherapy as a synergistic anticancer treatment. International Journal of Pharmaceutical Investigation, 1–8.  https://doi.org/10.1007/s40005-019-00431-5 Google Scholar
  4. 4.
    Hayek, S., Chen, C., Haik, Y., & Mohite, V. (2006). Application of nanomagnetic particles in hyperthermia cancer treatment. Nanotech, 2, 67–70.Google Scholar
  5. 5.
    Knežević, N. Ž., Gadjanski, I., & Durand, J.-O. (2019). Magnetic nanoarchitectures for cancer sensing, imaging and therapy. Journal of Materials Chemistry B, 7, 9–23.Google Scholar
  6. 6.
    Sharifi, I., & Shokrollahi, H. (2013). Structural, magnetic and Mössbauer evaluation of Mn substituted co–Zn ferrite nanoparticles synthesized by co-precipitation. Journal of Magnetism and Magnetic Materials, 334, 36–40.Google Scholar
  7. 7.
    Makovec, D., Kodre, A., Arčon, I., & Drofenik, M. (2009). Structure of manganese zinc ferrite spinel nanoparticles prepared with co-precipitation in reversed microemulsions. Journal of Nanoparticle Research, 11, 1145–1158.Google Scholar
  8. 8.
    Shen, X., Xiang, J., Song, F., & Liu, M. (2010). Characterization and magnetic properties of electrospun Co1−xZnxFe2O4 nanofibers. Applied Physics A: Materials Science & Processing, 99, 189–195.Google Scholar
  9. 9.
    Tiwari, A., Ghosh, S., & Pawar, S. (2015). Biomedical applications based on magnetic nanoparticles: DNA interactions. Analytical Methods, 7, 10109–10120.Google Scholar
  10. 10.
    Pershina, A., Sazonov, A., Novikov, D., Knyazev, A., Izaak, T., Itin, V., Naiden, E., Magaeva, A., & Terechova, O. (2011). Study of DNA interaction with cobalt ferrite nanoparticles. Journal of Nanoscience and Nanotechnology, 11, 2673–2677.Google Scholar
  11. 11.
    Iqubal, M. A., & Sharma, R. (2015). Studies on interaction of ribonucleotides with zinc ferrite nanoparticles using spectroscopic and microscopic techniques. Karbala International Journal of Modern Science, 1, 49–59.Google Scholar
  12. 12.
    Abudayyak, M., Gurkaynak, T. A., & Özhan, G. (2017). In vitro toxicological assessment of cobalt ferrite nanoparticles in several mammalian cell types. Biological Trace Element Research, 175, 458–465.Google Scholar
  13. 13.
    Aşık, E., Akpınar, Y., Güray, N. T., İşcan, M., Demircigil, G. Ç., & Volkan, M. (2016). Cellular uptake, genotoxicity and cytotoxicity of cobalt ferrite magnetic nanoparticles in human breast cells. Toxicology Research, 5, 1649–1662.Google Scholar
  14. 14.
    Kalaivani, P., Prabhakaran, R., Vaishnavi, E., Rueffer, T., Lang, H., Poornima, P., Renganathan, R., Vijaya Padma, V., & Natarajan, K. (2014). Synthesis, structure, DNA/protein binding and in vitro cytotoxicity of new ruthenium metallates. Inorganic Chemistry Frontiers, 1, 311–324.Google Scholar
  15. 15.
    Hekmat, A., Saboury, A. A., Divsalar, A., & Seyedarabi, A. (2013). Structural effects of TiO2 nanoparticles and doxorubicin on DNA and their antiproliferative roles in T47D and MCF7 cells. Anti-Cancer Agents in Medicinal Chemistry, 13, 932–951.Google Scholar
  16. 16.
    Chadha, D., Agarwal, S., & Mehrotra, R. (2016). Investigation of anti-Cancer drug Nimustine interaction with calf Thymus DNA. MAPAN, 31, 169–175.Google Scholar
  17. 17.
    Shahabadi, N., Hakimi, M., Morovati, T., & Fatahi, N. (2017). DNA binding affinity of a macrocyclic copper (II) complex: Spectroscopic and molecular docking studies. Nucleosides, Nucleotides & Nucleic Acids, 36, 497–510.Google Scholar
  18. 18.
    Shi, J.-H., Liu, T.-T., Jiang, M., Chen, J., & Wang, Q. (2015). Characterization of interaction of calf thymus DNA with gefitinib: Spectroscopic methods and molecular docking. Journal of Photochemistry and Photobiology. B, 147, 47–55.Google Scholar
  19. 19.
    Karthikeyan, S., Bharanidharan, G., Kesherwani, M., Mani, K. A., Srinivasan, N., Velmurugan, D., Aruna, P., & Ganesan, S. (2016). Insights into the binding of thiosemicarbazone derivatives with human serum albumin: Spectroscopy and molecular modelling studies. Journal of Biomolecular Structure & Dynamics, 34, 1264–1281.Google Scholar
  20. 20.
    Mukherjee, A., & Singh, B. (2017). Binding interaction of pharmaceutical drug captopril with calf thymus DNA: A multispectroscopic and molecular docking study. Journal of Luminescence, 190, 319–327.Google Scholar
  21. 21.
    Lenglet, G., & David-Cordonnier, M. H. (2010). DNA-destabilizing agents as an alternative approach for targeting DNA: Mechanisms of action and cellular consequences. Journal of Nucleic Acids, 2010, 1–18.Google Scholar
  22. 22.
    Kumar, C., Turner, R., & Asuncion, E. (1993). Groove binding of a styrylcyanine dye to the DNA double helix: The salt effect. Journal of Photochemistry and Photobiology A, 74, 231–238.Google Scholar
  23. 23.
    Jafari, F., Samadi, S., Nowroozi, A., Sadrjavadi, K., Moradi, S., Ashrafi-Kooshk, M. R., & Shahlaei, M. (2018). Experimental and computational studies on the binding of diazinon to human serum albumin. Journal of Biomolecular Structure & Dynamics, 36, 1490–1510.Google Scholar
  24. 24.
    Moradi, S. Z., Nowroozi, A., Sadrjavadi, K., Moradi, S., Mansouri, K., Hosseinzadeh, L., & Shahlaei, M. (2018). Direct evidences for the groove binding of the Clomifene to double stranded DNA. International Journal of Biological Macromolecules, 114, 40–53.Google Scholar
  25. 25.
    Li, S., Pan, J., Zhang, G., Xu, J., & Gong, D. (2017). Characterization of the groove binding between di-(2-ethylhexyl) phthalate and calf thymus DNA. International Journal of Biological Macromolecules, 101, 736–746.Google Scholar
  26. 26.
    Yañez, C., & Günther, G. (2014). Is the determination of the association constant of cyclodextrin inclusion complexes dependent on the technique. Journal of the Chilean Chemical Society, 59, 2523–2525.Google Scholar
  27. 27.
    Ouameur, A. A., Arakawa, H., Ahmad, R., Naoui, M., & Tajmir-Riahi, H. (2005). A comparative study of Fe (II) and Fe (III) interactions with DNA duplex: Major and minor grooves bindings. DNA and Cell Biology, 24, 394–401.Google Scholar
  28. 28.
    Xu, L., Hu, Y.-X., Li, Y.-C., Zhang, L., Ai, H.-X., Liu, Y.-F., & Liu, H.-S. (2018). In vitro DNA binding studies of lenalidomide using spectroscopic in combination with molecular docking techniques. Journal of Molecular Structure, 1154, 9–18.Google Scholar
  29. 29.
    Pages, B. J., Ang, D. L., Wright, E. P., & Aldrich-Wright, J. R. (2015). Metal complex interactions with DNA. Dalton Transactions, 44, 3505–3526.Google Scholar
  30. 30.
    Chaires, J. B. (1989). Unusual condensation behavior of poly (dA)-poly (dT). Biopolymers, 28, 1645–1650.Google Scholar
  31. 31.
    Andrushchenko, V., Van De Sande, H., & Wieser, H. (2003). DNA interaction with Mn2+ ions at elevated temperatures: VCD evidence of DNA aggregation. Biopolymers, 69, 529–545.Google Scholar
  32. 32.
    Kypr, J., Kejnovska, I., Renciuk, D., & Vorlickova, M. (2009). Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Research, 37, 1713–1725.Google Scholar
  33. 33.
    Park, I., Kim, T., Park, Y., Shin, B., Choi, E., Chowdhury, E., Akaike, T., & Cho, C. (2001). Galactosylated chitosan-graft-poly (ethylene glycol) as hepatocyte-targeting DNA carrier. Journal of Controlled Release, 76, 349–362.Google Scholar
  34. 34.
    Ameta, R. K., Singh, M., & Kale, R. K. (2013). Synthesis and structure–activity relationship of benzylamine supported platinum (IV) complexes. New Journal of Chemistry, 37, 1501–1508.Google Scholar
  35. 35.
    Veeralakshmi, S., Nehru, S., Sabapathi, G., Arunachalam, S., Venuvanalingam, P., Kumar, P., Anusha, C., & Ravikumar, V. (2015). Single and double chain surfactant–cobalt (III) complexes: The impact of hydrophobicity on the interaction with calf thymus DNA, and their biological activities. RSC Advances, 5, 31746–31758.Google Scholar
  36. 36.
    Ghosh, D., Dey, S. K., & Saha, C. (2014). Mutation induced conformational changes in genomic DNA from cancerous K562 cells influence drug-DNA binding modes. PLoS One, 9, e84880.Google Scholar
  37. 37.
    Bhattacharya, S., & Mandal, S. S. (1997). Interaction of surfactants with DNA. Role of hydrophobicity and surface charge on intercalation and DNA melting. Biochimica et Biophysica Acta - Biomembranes, 1323, 29–44.Google Scholar
  38. 38.
    Hamelberg, D., Williams, L. D., & Wilson, W. D. (2002). Effect of a neutralized phosphate backbone on the minor groove of B-DNA: Molecular dynamics simulation studies. Nucleic Acids Research, 30, 3615–3623.Google Scholar
  39. 39.
    Ahmad, F., Yao, H., Zhou, Y., & Liu, X. (2015). Toxicity of cobalt ferrite (CoFe2O4) nanobeads in Chlorella vulgaris: Interaction, adaptation and oxidative stress. Chemosphere, 139, 479–485.Google Scholar
  40. 40.
    Jin, K. L., Park, J.-Y., Noh, E. J., Hoe, K. L., Lee, J. H., Kim, J.-H., & Nam, J.-H. (2010). The effect of combined treatment with cisplatin and histone deacetylase inhibitors on HeLa cells. Journal of Gynecologic Oncology, 21, 262–268.Google Scholar
  41. 41.
    Hekmat, A., Rabizadeh, M., Safavi, M., & Hajebrahimi, Z. (2019). The comparison of the apoptosis effects of titanium dioxide nanoparticles into MDA-MB-231 cell line in microgravity and gravity conditions. Nanomedicine Journal, 6, 120–127.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran

Personalised recommendations