Copper Oxide Nanoparticles Synthesized Using Eupatorium odoratum, Acanthospermum hispidum Leaf Extracts, and Its Antibacterial Effects Against Pathogens: a Comparative Study

  • Murugesan Gowri
  • Nachimuthu LathaEmail author
  • Mariappan Rajan


Metal oxide nanoparticles have numerous applications in the food processing, agriculture, and medical field. The green way synthesis of metal oxide nanoparticles using leaf extracts has gained great interest because of cost effective, rapid, simple, and eco-friendly approach. In this research work, we report the synthesis of copper oxide nanoparticles (CuO NPs) using Eupatorium odoratum and Acanthospermum hispidum leaf extracts at room temperature (27 °C). Further, the synthesized CuO NPs were characterized using UV-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy with energy dispersive atomic X-ray spectroscopy, and transmission electron microscopy technique. The zone of inhibition against Staphylococcus aureus, Bacillus cereus, and Escherichia coli was found to be 19 mm, 12 mm, and 15 mm for CuO NPs synthesized using Eupatorium odoratum extract and 13 mm, 10 mm, and 20 mm for CuO NPs synthesized using Acanthospermum hispidum extract. The green synthesized CuO NPs are an effective candidate which plausibly utilized in the biomedical field.

Graphical Abstract


Antibacterial effect Eupatorium odoratum Acanthospermum hispidum Green synthesis Copper oxide 


Compliance with Ethical Standards

Conflict of Interest


Research Involving Humans and Animals Statement


Informed Consent


Funding Statement



  1. 1.
    Rajeshkumar, S., Kannan, C., & Annadurai, G. (2012). Synthesis and characterization of antimicrobial silver nanoparticles using marine brown seaweed Padina tetrastromatica. Drug Invention Today, 4, 511–513.Google Scholar
  2. 2.
    Ramkumar, V. S., Pugazhendhi, A., Gopalakrishnan, K., Sivagurunathan, P., Saratale, G. D., Dung, T. N. B., & Kannapiran, E. (2017). Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnology Reports, 14(1–7).Google Scholar
  3. 3.
    Phongtongpasuk, S., Poadang, S., & Yongvanich, N. (2016). Environmental-friendly method for synthesis of silver nanoparticles from Dragon fruit peel extract and their antibacterial activities. Energy Procedia, 89, 239–247.CrossRefGoogle Scholar
  4. 4.
    Latha, N., & Gowri, M. (2014). Bio synthesis and characterisation of Fe3o4 nanoparticles using Caricaya papaya leaves extract. International Journal of Science and Research, 3, 1551–1556.Google Scholar
  5. 5.
    Marchiol, L., Mattiello, A., Pošćić, F., Giordano, C., & Musetti, R. (2014). In vivo synthesis of nanomaterials in plants: Location of silver nanoparticles and plant metabolism. Nanoscale Research Letters, 9, 101.CrossRefGoogle Scholar
  6. 6.
    Siddiqi, K. S., & Husen, A. (2016). Fabrication of metal nanoparticles from fungi and metal salts: Scope and application. Nanoscale Research Letters, 11, 98.CrossRefGoogle Scholar
  7. 7.
    Yasmin, A., Ramesh, K., & Rajeshkumar, S. (2014). Optimization and stabilization of gold nanoparticles by using herbal plant extract with microwave heating. Nano Convergence, 1, 12.CrossRefGoogle Scholar
  8. 8.
    Banerjee, P., Satapathy, M., Mukhopahayay, A., & Das, P. (2014). Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: Synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources and Bioprocessing, 1, 3.CrossRefGoogle Scholar
  9. 9.
    Acharyulu, N. P. S., Dubey, R. S., Swaminadham, V., Pratap, K., Kalyani, R. L., & Pammi, S. V. N. (2014). Green synthesis of CuO nanoparticles using Phyllanthus amarus leaf extract and their antibacterial activity against multidrug resistance bacteria. International Journal of Engineering Research and Technology, 3, 639–641.Google Scholar
  10. 10.
    Sahooli, M., Sabbaghi, S., & Saboori, R. (2012). Synthesis and characterization of mono sized CuO nanoparticles. Materials Letters, 81, 169–172.CrossRefGoogle Scholar
  11. 11.
    Soltanianfard, M. J., & Firoozadeh, A. (2016). Synthesis and characterization of copper(II)-oxide nanoparticles from two Cu(II) coordination polymers. Journal of Sciences, Islamic Republic of Iran, 27, 113–117.Google Scholar
  12. 12.
    Radhakrishnan, A. A., & Beena, B. B. (2014). Structural and optical absorption analysis of CuO nanoparticles. Indian Journal of Advances in Chemical science, 2, 158–161.Google Scholar
  13. 13.
    Dar, M. A., Kim, Y. S., Kim, W. B., Sohn, J. M., & Shin, H. S. (2008). Structural and magnetic properties of CuO nanoneedles synthesized by hydrothermal method. Applied Surface Science, 254, 7477–7481.CrossRefGoogle Scholar
  14. 14.
    Dang, T. M. D., Le, T. T. T., Fribourg-Blanc, E., & Dang, M. C. (2011). Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2, 015009.Google Scholar
  15. 15.
    Sundaramurthy, N., & Parthiban, C. (2015). Biosynthesis of copper oxide nanoparticles using Pyrus pyrifolia leaf extract and evolve the catalytic activity. International Research Journal of Engineering and Technology, 2, 332–338.Google Scholar
  16. 16.
    Dastjerdi, R., & Montazer, M. (2010). A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids and Surfaces B: Biointerfaces, 79, 5–18.CrossRefGoogle Scholar
  17. 17.
    Udayabhanu, Nethravathi, P. C., Pavan Kumar, M. A., Suresh, D., Lingaraju, K., Rajanaika, H., Nagabhushana, H., & Sharma, S. C. (2015). Tinospora cordifolia mediated facile green synthesis of cupric oxide nanoparticles and their photocatalytic, antioxidant and antibacterial properties. Materials Science in Semiconductor Processing, 33, 81–88.CrossRefGoogle Scholar
  18. 18.
    Prabhu, Y. T., Venkateswara Rao, K., Sesha Sai, V., & Pavani, T. (2017). A facile biosynthesis of copper nanoparticles: A micro-structural and antibacterial activity investigation. Journal of Saudi Chemical Society, 21, 180–185.CrossRefGoogle Scholar
  19. 19.
    Naika, H. R., Lingaraju, K., Manjunath, K., Kumar, D., Nagaraju, G., Suresh, D., & Nagabhushana, H. (2015). Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. Journal of Taibah University for Science, 9, 7–12.CrossRefGoogle Scholar
  20. 20.
    Chung, I., Abdul Rahuman, A., Marimuthu, S., Vishnu Kirthi, A., Anbarasan, K., Padmini, P., & Rajakumar, G. (2017). Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Experimental and Therapeutic Medicine, 14, 18–24.Google Scholar
  21. 21.
    Jayakumarai, G., Gokulpriya, C., Sudhapriya, R., Sharmila, G., & Muthukumaran, C. (2015). Phytofabrication and characterization of monodisperse copper oxide nanoparticles using Albizia lebbeck leaf extract. Applied Nanoscience, 5, 1017–1021.CrossRefGoogle Scholar
  22. 22.
    Sharma, J. K., Akhtar, M. S., Ameen, S., Srivastava, P., & Singh, G. (2015). Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. Journal of Alloys and Compounds, 632, 321–325.CrossRefGoogle Scholar
  23. 23.
    Sharma, B. K., Shah, D. V., & Roy, D. R. (2018). Green synthesis of CuO nanoparticles using Azadirachta indica and its antibacterial activity for medicinal applications. Materials Research Express, 5, 095033.CrossRefGoogle Scholar
  24. 24.
    Vijay Kumar, P. P. N., Shameem, U., Kollu, P., Kalyani, R. L., & Pammi, S. V. N. (2015). Green synthesis of copper oxide nanoparticles using Aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. BioNanoScience, 5, 135–139.CrossRefGoogle Scholar
  25. 25.
    Caroling, G., Vinodhini, E., Ranjitham, A. M., & Shanthi, P. (2015). Biosynthesis of copper nanoparticles using aqueous Phyllanthus embilica (Gooseberry) extract-characterization and study of antimicrobial effects. International Journal of Nanomaterials and Chemistry, 1, 53–63.Google Scholar
  26. 26.
    Sivaraj, R., Rahman, P. K. S. M., Rajiv, P., Salam, H. A., & Venckatesh, R. (2014). Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 178–181.CrossRefGoogle Scholar
  27. 27.
    Sankar, R., Maheswari, R., Karthik, S., Shivashangari, K. S., & Ravikumar, V. (2014). Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Materials Science and Engineering: C, 44, 234–239.CrossRefGoogle Scholar
  28. 28.
    Pradeepkumar, P., Govindaraj, D., Jeyaraj, M., Munusamy, M. A., & Rajan, M. (2017). Assembling of multifunctional latex-based hybrid nanocarriers from Calotropis gigantea for sustained (doxorubicin) DOX releases. Biomedicine & Pharmacotherapy, 87, 461–470.CrossRefGoogle Scholar
  29. 29.
    Jeyaraj, M., Amarnath Praphakar, R., Rajendran, C., Ponnamma, D., Sadasivuni, K. K., Munusamy, M. A., & Rajan, M. (2016). Surface functionalization of natural lignin isolated from Aloe barbadensis Miller biomass by atom transfer radical polymerisation for enhanced anticancer efficacy. RSC Advances, 6, 51310–51319.CrossRefGoogle Scholar
  30. 30.
    Govintharaj, D., & Rajan, M. (2016). Synthesis and spectral characterization of novel nano-hydroxyapatite from Moringa oleifera Leaf. Materials Today: Proceedings, 3, 2394–2398.Google Scholar
  31. 31.
    Harun, F. B., Jamalullail, S. M. S. S., Yin, K. B., Othman, Z., Tilwari, A., & Balaram, P. (2012). Autophagic cell death is induced by acetone and ethyl acetate extracts from Eupatorium odoratum in vitro: Effects on MCF-7 and vero cell lines. The Scientific World Journal, 2012, 1–9.CrossRefGoogle Scholar
  32. 32.
    Bhargava, D., Sanjay, K., Jagadish, N. S., Bikash, S., & Chiranjit, M. (2011). Screening of antigonorrhoeal activity of some medicinal plants in Nepal. International Journal of Pharma and Bioscience, 2, 203–212.Google Scholar
  33. 33.
    Roy, H., Chakraborty, A., Bhanja, S., Nayak, B. S., Mishra, S. R., & Ellaiah, P. (2010). Preliminary phytochemical investigation and anthelmintic activity of Acanthospermum hispidum DC. Journal of Pharmaceutical Science and Technology, 2, 217–221.Google Scholar
  34. 34.
    Chakraborty, A. K., Gaikwad, A. V., & Singh, K. B. (2012). Phytopharmacological review on Acanthospermum hispidum. Journal of Applied Pharmaceutical Science, 02, 144–148.Google Scholar
  35. 35.
    Ahmed, S., Saifullah, Ahmad, M., Swami, B. L., & Ikram, S. (2016). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Science, 9, 1–7.CrossRefGoogle Scholar
  36. 36.
    Tchakam, P. D., Lunga, P. K., Kowa, T. K., Lonfouo, A. H. N., Wabo, H. K., Tapondjou, L. A., Tane, P., & Kuiate, J. R. (2012). Antimicrobial and antioxidant activities of the extracts and compounds from the leaves of Psorospermum aurantiacum Engl. and Hypericum lanceolatum Lam. BMC Complementary and Alternative Medicine, 12, 136.CrossRefGoogle Scholar
  37. 37.
    Rayapa Reddy, K. (2017). Green synthesis, morphological and optical studies of CuO nanoparticles. Journal of Molecular Structure, 1150, 553–557.CrossRefGoogle Scholar
  38. 38.
    Caroling, G., Priyadharshini, M. N., Vinodhini, E., Ranjitham, A. M., & Shanthi, P. (2015). Biosynthesis of copper nanoparticles using aqueous guava extract-characterisation and study of antibacterial effects. International Journal of Pharma and Bio Sciences, 5, 25–43.Google Scholar
  39. 39.
    Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, 107, 668–677.CrossRefGoogle Scholar
  40. 40.
    Rao, K. J., & Paria, S. (2013). Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract. Materials Research Bulletin, 48, 628–634.41.CrossRefGoogle Scholar
  41. 41.
    Shi, L. B., Tang, P. F., Zhang, W., Zhao, Y. P., Zhang, L. C., & Zhang, H. (2017). Green synthesis of CuO nanoparticles using Cassia auriculata leaf extract and in vitro evaluation of their biocompatibility with rheumatoid arthritis macrophages (RAW 264.7). Tropical Journal of Pharmaceutical Research, 16, 185–192.CrossRefGoogle Scholar
  42. 42.
    Mariselvam, R., Ranjitsingh, A. J. A., Padmalatha, C., & Selvakumar, P. M. (2014). Green synthesis of copper quantum dots using Rubia cardifolia plant root extracts and its antibacterial properties. Journal of Academia and Industrial Research, 3, 191–194.Google Scholar
  43. 43.
    Amarnath Praphakar, R., Jeyaraj, M., Ahmed, M., & Rajan, M. (2018). Silver nanoparticle functionalized CS-g-(CA-MA-PZA) carrier for sustainable anti-tuberculosis drug delivery. International Journal of Biological Macromolecules, 118, 1627–1638.CrossRefGoogle Scholar
  44. 44.
    Abboud, Y., Saffaj, T., Chagraoui, A., Bouari, A. E., Brouzi, K., Tanane, O., & Ihssane, B. (2014). Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles produced using brown alga extract (Bifurcariabifurcata). Applied Nanoscience, 4, 571–576.CrossRefGoogle Scholar
  45. 45.
    Azam, A., Ahmed, A. S., Oves, M., Khan, M. S., & Memic, A. (2012). Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and -negative bacterial strains. International Journal of Nanomedicine, 7, 3527–3535.CrossRefGoogle Scholar
  46. 46.
    Sharmila, G., Thirumarimurugan, M., & Sivakumar, V. M. (2016). Optical, catalytic and antibacterial properties of phytofabricated CuO nanoparticles using Tecoma castanifolia leaf extract. Optik - International Journal for Light and Electron Optics, 127, 7822–7828.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Murugesan Gowri
    • 1
  • Nachimuthu Latha
    • 1
    Email author
  • Mariappan Rajan
    • 2
  1. 1.Department of ChemistryKandaswami Kandar’s CollegeNamakkal DistrictIndia
  2. 2.Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of ChemistryMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations