Advertisement

BioNanoScience

, Volume 9, Issue 3, pp 564–572 | Cite as

Green Synthesis of Silver Nanoparticle from Datura inoxia Flower Extract and Its Cytotoxic Activity

  • Babu GajendranEmail author
  • Prabhu Durai
  • Krishnapriya M. Varier
  • Wuling Liu
  • Yanmei Li
  • Saravanan Rajendran
  • Radhakrishnan Nagarathnam
  • Arulvasu ChinnasamyEmail author
Article
  • 61 Downloads

Abstract

The silver nanoparticles (AgNPs) were synthesized biologically through a green synthesis method using the flower extract of Datura inoxia, a well-known medicinal plant for its antispasmodic, pacifying, pain relief, and for respiratory ailments. The synthesized AgNPs were structurally characterized and the cytotoxic efficiency of the AgNPs on human breast cancer cell line (MCF7) was appraised by cell viability assay, followed by cytomorphological analysis. However, apoptosis initiated by the AgNPs administration was assessed through nuclear fragmentation assay, cell cycle arrest, and comet assay. The synthesized AgNPs inhibited the propagation of cells at an IC50 concentration of 20 μg/mL after 24 h incubation. The AgNPs promoted apoptosis through DNA damage. Thus, this study reveals that the green synthesis is an ecofriendly method for production of AgNPs from Datura inoxia flower extract which provided a powerful anti-proliferative action on MCF7 cell line, suggesting them as a novel chemotherapeutic agent against human breast cancer.

Keywords

Datura inoxia Silver nanoparticles Cytotoxicity MCF7 DNA damage 

Notes

Acknowledgments

The authors extend their thanks to the National Centre for Nanosciences and Technology (NCNSNT), University of Madras, Chennai for providing instrumentation facilities for NP characterization.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding Statement

This study received meritorious fellowship from the University Grant Commission-Basic Scientific Research (UGC-BSR), New Delhi, India. Also, this study was financially supported by grants from the National Natural Science Foundation of China (81700169, 81872772), the Natural Science Foundation of Guizhou (QKH 20181409), the Light of the Western Talent Cultivation Program of the Chinese Academy of Sciences (201684), and the 100 Leading Talents of Guizhou Province (fund for Y. M. L) (QKHPTRC2017 5737).

References

  1. 1.
    Caruthers, S. D., Wickline, S. A., & Lanza, G. M. (2007). Nano technological applications in medicine. Current Opinion in Biotechnology, 18, 26–30.  https://doi.org/10.1016/j.copbio.2007.01.006.CrossRefGoogle Scholar
  2. 2.
    Desai, M. P., Labhasetwar, V., Walter, E., Levy, R. J., & Amidon, G. L. (1997). The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharmaceutical Research, 14, 1568–1573.CrossRefGoogle Scholar
  3. 3.
    Mulder, W. J., & Fayad, Z. A. (2008). Nanomedicine captures cardiovascular disease. Arteriosclerosis, Thrombosis and Vascular Biology, 28(5), 801–802.  https://doi.org/10.1161/ATVBAHA.108.165332.CrossRefGoogle Scholar
  4. 4.
    Prabhu, D., Arulvasu, C., Babu, G., Manikandan, R., & Srinivasan, P. (2013). Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochemistry, 48, 317–324.  https://doi.org/10.1016/j.procbio.2012.12.013.CrossRefGoogle Scholar
  5. 5.
    Riehemann, K., Schneider, S. W., Luger, T. A., Godin, B., Ferrari, M., & Fuchs, H. (2009). Nanomedicine-challenge and perspectives. Angewandte Chemie Internatiolnal Edition England, 48, 872–897.  https://doi.org/10.1002/anie.200802585.CrossRefGoogle Scholar
  6. 6.
    Mamo, T., Moseman, E. A., Kolishetti, N., Salvador-Morales, C., Shi, J., Kuritzkes, D. R., Langer, R., Von Andrian, U., & Farokhzad, O. C. (2010). Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (London, England), 5, 269–285.  https://doi.org/10.2217/nnm.10.1.CrossRefGoogle Scholar
  7. 7.
    Parkin, D. M., Pisani, P., & Ferlay, J. (1993). Estimates of the worldwide incidence of eighteen major cancers in 1985. International Journal of Cancer, 54, 594–606.  https://doi.org/10.1002/ijc.2910540413.CrossRefGoogle Scholar
  8. 8.
    Asha Rani, P. V., Mun, G. L. K., Hande, M. P., & Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3, 279–290.  https://doi.org/10.1021/nn800596w.CrossRefGoogle Scholar
  9. 9.
    Russo, J., Yang, X., Hu, Y., Bove, B., Huang, Y., Silva, I. D. C. G., Tahin, Q., Wu, Y., Higgy, N., Zekri, A., & Russo, I. (1998). Biological and molecular basis of human breast cancer. Frontiers in Bioscience, 3, 944–960.CrossRefGoogle Scholar
  10. 10.
    Head, J., & Johnston, S. R. (2004). New targets for therapy in breast cancer: farnesyltransferase inhibitors. Breast Cancer Research, 6, 262–268.  https://doi.org/10.1186/bcr947.CrossRefGoogle Scholar
  11. 11.
    Ashkenazi, A., & Dixit, V. M. (1998). Death receptors: signaling and modulation. Science, 281, 1305–1308.  https://doi.org/10.1126/science.281.5381.1305.CrossRefGoogle Scholar
  12. 12.
    Green, D. R., & Reed, J. C. (1998). Mitochondria and apoptosis. Science, 281, 1309–1312.  https://doi.org/10.1126/science.281.5381.1309.CrossRefGoogle Scholar
  13. 13.
    Lokina, S., Stephen, A., Kaviyarasan, V., Arulvasu, C., & Narayanan, V. (2014). Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles. European Journal of Medicinal Chemistry, 76, 256–263.  https://doi.org/10.1016/j.ejmech.2014.02.010.CrossRefGoogle Scholar
  14. 14.
    Prabhu, D., Arulvasu, C., Babu, G., Manikandan, R., Srinivasan, P., Govindaraju, K., & Ashokkumar, T. (2014). Synthesis and characterization of silver nanoparticles using crystal compound of sodium para-hydroxybenzoate tetrahydrateisolated from Vitex negundo. L leaves and its apoptotic effect on human colon cancer cell lines. European Journal of Medicinal Chemistry, 84, 90–99.  https://doi.org/10.1016/j.ejmech.2014.07.012.CrossRefGoogle Scholar
  15. 15.
    Kotakadi, V. S., Gaddam, S. A., Rao, Y. S., Prasad, T. N. V. K. V., Reddy, A. V., & Sai Gopal, D. V. R. (2014). Biogenic silver nanoparticles: efficient and effective antifungal agents. European Journal of Medicinal Chemistry, 73, 135–140.  https://doi.org/10.1007/s13204-015-0463-1.CrossRefGoogle Scholar
  16. 16.
    Wang, T. T., Chai, F., Gang, W. C., Li, L., Yan Liu, H., & Yu Zhang, L. (2011). Fluorescent hollow/rattle-type mesoporous Au@SiO2 nanocapsules for drug delivery and fluorescence imaging of cancer cells. Journal of Colloid and Interface Science, 358, 109–115.  https://doi.org/10.1016/j.jcis.2011.02.023.CrossRefGoogle Scholar
  17. 17.
    Babu, G., Arulvasu, C., Prabhu, D., Jegadeesh, R., & Manikandan, R. (2014). Biosynthesis and characterization of silver nanoparticles from Datura inoxia and its apoptotic effect on human breast cancer cell line MCF7. Material Letters, 122, 98–102.  https://doi.org/10.1016/j.matlet.2014.02.003.CrossRefGoogle Scholar
  18. 18.
    Luo, H., Wang, F., Baia, B., Chena, T., & Zhenga, W. (2012). Adsorption of methylene blue from aqueous solution by graphene. Colloids and Surfaces B: Biointerfaces, 94, 304–308.  https://doi.org/10.1016/j.colsurfb.2011.10.019.CrossRefGoogle Scholar
  19. 19.
    Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175, 184–191.  https://doi.org/10.1016/0014-4827(88)90265-0.CrossRefGoogle Scholar
  20. 20.
    Kasthuri, J., Veerapandian, S., & Rajendiran, N. (2009). Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids and Surfaces B: Biointerfaces, 68, 55–60.  https://doi.org/10.1016/j.colsurfb.2008.09.021.CrossRefGoogle Scholar
  21. 21.
    Philip, D. (2009). Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochimia Acta Part A, 73, 374–381.  https://doi.org/10.1016/j.saa.2009.02.037.CrossRefGoogle Scholar
  22. 22.
    Shaligram, N. S., Bule, M., Bhambure, R., Singhal, R. S., Singh, S. K., & Szakacs, G. (2009). Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochemistry, 44, 939–943.  https://doi.org/10.1016/j.procbio.2009.04.009.CrossRefGoogle Scholar
  23. 23.
    Mirgorod, Y. A., & Borodina, V. G. (2013). Preparation and bactericidal properties of silver nanoparticles in aqueus tea leaf extract. Inorganic Materials, 49(10), 980–983.  https://doi.org/10.1134/S0020168513090094.CrossRefGoogle Scholar
  24. 24.
    Jeyaraj, M., Sathishkumar, G., Sivanandhan, G., Mubarak Ali, D., Rajesh, M., & Arun, R. (2013). An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids and Surfaces B: Biointerfaces, 1061, 86–92.  https://doi.org/10.1016/j.colsurfb.2012.09.042.CrossRefGoogle Scholar
  25. 25.
    Daizy, P. (2009). Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochimica Acta Part A, 7, 374–381.  https://doi.org/10.1016/j.saa.2009.02.037.Google Scholar
  26. 26.
    Daizy, P. (2011). Mangifera Indica leaf-assisted biosynthesis of welldispersed silver nanoparticles. Spectrochimica Acta Part A, 78, 327–331.  https://doi.org/10.1016/j.saa.2010.10.015.CrossRefGoogle Scholar
  27. 27.
    Shankar, S. S., Ahmad, A., & Sastry, M. (2003). Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology Progress, 19, 1627–1631.  https://doi.org/10.1021/bp034070w.CrossRefGoogle Scholar
  28. 28.
    Li, S., Shen, Y., Xie, A., Yu Qiu, L., & Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry, 9, 852–859.  https://doi.org/10.1039/B615357G.CrossRefGoogle Scholar
  29. 29.
    Oberdorster, G. (2001). Pulmonary effects of inhaled ultrafine particles. International Archives of Occupational and Environmental Health, 74, 1–8.  https://doi.org/10.1007/s004200000185.CrossRefGoogle Scholar
  30. 30.
    Pernodet, N., Fang, X. H., Sun, Y., Bakhtina, A., Ramakrishnan, A., & Sokoloy, J. (2006). Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small, 2, 766–773.  https://doi.org/10.1002/smll.200500492.CrossRefGoogle Scholar
  31. 31.
    Roger, E., Lagarce, F., Garcion, E., & Benoit, J. P. (2009). Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. Journal of Controlled Release, 140, 174–181.  https://doi.org/10.1016/j.jconrel.2009.08.010.CrossRefGoogle Scholar
  32. 32.
    Hu, W., Lee, S. K., Jung, M., Heo, S. L., Hur, J. H., & Wang, M. H. (2010). Induction of cell cycle arrest and apoptosis by the ethyl acetate fraction of Kalopanax pictus leaves in human colon cancer cells. Bioresource Technology, 101, 9366–9372.  https://doi.org/10.1016/j.biortech.2010.06.091.CrossRefGoogle Scholar
  33. 33.
    Piao, M. J., Kang, K. A., Lee, I. K., Kim, H. M., Kim, S., & Choi, J. Y. (2011). Silver nanoparticles down-regulate Nrf2-mediated 8-oxoguanine DNA glycosylase 1 through inactivation of extracellular regulated kinase and protein kinase B in human Chang liver cells. Toxicology Letters, 201, 92–100.  https://doi.org/10.1016/j.toxlet.2011.09.002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Babu Gajendran
    • 1
    • 2
    • 3
    Email author
  • Prabhu Durai
    • 1
  • Krishnapriya M. Varier
    • 1
    • 4
  • Wuling Liu
    • 2
    • 3
  • Yanmei Li
    • 2
    • 3
  • Saravanan Rajendran
    • 5
  • Radhakrishnan Nagarathnam
    • 6
  • Arulvasu Chinnasamy
    • 1
    Email author
  1. 1.Department of ZoologyUniversity of MadrasChennaiIndia
  2. 2.The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of SciencesGuiyangGuizhou-550014China
  3. 3.State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyang, Guizhou-550025China
  4. 4.Department of Medical Biochemistry, Dr. ALM PGIBMSUniversity of MadrasChennai, Tamil Nadu-600113India
  5. 5.Department of Mechanical Engineering, Universidad de TarapacáAricaChile
  6. 6.CAS in BotanyUniversity of MadrasChennaiIndia

Personalised recommendations