Green Synthesis of Iron Oxide Nanoparticles Mediated by Filamentous Fungi Isolated from Sundarban Mangrove Ecosystem, India

  • Shouvik Mahanty
  • Madhurima Bakshi
  • Somdeep Ghosh
  • Shreosi Chatterjee
  • Subarna Bhattacharyya
  • Papita Das
  • Surajit Das
  • Punarbasu ChaudhuriEmail author


In the present study, biosynthesis of iron oxide nanoparticles (IONPs) was achieved using three manglicolous fungi, STSP10 (Trichoderma asperellum), STSP 19 (Phialemoniopsis ocularis) and STSP 27 (Fusarium incarnatum) isolated from estuarine mangrove sediment of Indian Sundarban. Synthesised IONPs were initially monitored by UV-Vis spectrophotometer and further characterised by Fourier transform infrared (FTIR) spectroscopy, which provides information regarding proteins and other organic residues involved with iron nanoparticle. The morphology of iron nanoparticle were found to be spherical with average particle size ranging between 25 ± 3.94 nm for T. asperellum, 13.13 ± 4.32 nm for P. ocularis and 30.56 ± 8.68 nm for F. incarnatum, which were confirmed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Energy-dispersive x-ray analysis (EDX) analysis was performed during FESEM study to confirm the presence of elemental Fe in the sample. X-ray diffraction (XRD) pattern has shown that the IONPs are iron oxide in nature.


Green synthesis Manglicolous fungi Iron oxide nanoparticles (IONPs) Indian Sundarban 



The authors are thankful to Department of Biotechnology (DBT), India (No. BT/PR9465/NDB/39/360/2013) and Centre for Nanoscience and Nanotechnology (CRNN), University of Calcutta, for financial and infrastructural support.

Compliance with Ethical Standards

Conflict of Interest


Research Involving Humans and Animals Statement


Informed Consent


Funding Statement



  1. 1.
    Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L., & Mirkin, C. A. (1997). Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 277, 1078–1081.CrossRefGoogle Scholar
  2. 2.
    Luechinger, N. A., Grass, R. N., Athanassiou, E. K., & Stark, W. J. (2010). Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chemistry of Materials, 22, 155–160.CrossRefGoogle Scholar
  3. 3.
    Bakshi, M., Ghosh, S., & Chaudhuri, P. (2015). Green synthesis, characterization and antimicrobial potential of sliver nanoparticles using three mangrove plants from Indian Sundarban. Bionanoscience, 5, 162–170.CrossRefGoogle Scholar
  4. 4.
    Thanh, N. T., & Green, L. A. (2010). Functionalisation of nanoparticles for biomedical applications. Nano Today, 5, 213–230.CrossRefGoogle Scholar
  5. 5.
    Atabaev, T. S. (2018). PEG-coated superparamagnetic dysprosium-doped Fe3O4 nanoparticles for potential MRI imaging. Bionanoscience, 8, 299–303.CrossRefGoogle Scholar
  6. 6.
    Li, Z., Kawashita, M., Araki, N., Mitsumori, M., & Hiraoka, M. (2009). Preparation of size-controlled magnetite nanoparticles for hyperthermia of cancer. Transactions of the Materials Research Society of Japan, 34, 77–80.CrossRefGoogle Scholar
  7. 7.
    Lin, K. S., Chang, N. B., & Chuang, T. D. (2008). Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater. Science and Technology of Advanced Materials, 9, 025015.CrossRefGoogle Scholar
  8. 8.
    Gui, M., Smuleac, V., Ormsbee, L. E., Sedlak, D. L., & Bhattacharyya, D. (2012). Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of tri chloro ethylene from water. Journal of Nanoparticle Research, 14, 861.CrossRefGoogle Scholar
  9. 9.
    Ingle, A., Rai, M., Gade, A., & Bawaskar, M. (2009). Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. Journal of Nanoparticle Research, 11, 2079.CrossRefGoogle Scholar
  10. 10.
    Mallik, K., Witcomb, M. J., & Scurell, M. S. (2005). Redox catalytic property of gold nanoclusters: evidence of an electron-relay effect. Applied Physics A: Materials Science & Processing, 80, 797–801.CrossRefGoogle Scholar
  11. 11.
    Liz-Marzan, L. (2006). Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir, 22, 32–41.CrossRefGoogle Scholar
  12. 12.
    Fedlheim, D. L., & Foss, C. A. (2001). Metal nanoparticles: synthesis, characterization, and applications. Boca Raton: CRC Press.Google Scholar
  13. 13.
    Kamat, P. V. (1993). Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chemical Reviews, 93, 267–300.CrossRefGoogle Scholar
  14. 14.
    Giguere, R. J., Bray, T. L., Duncan, S. M., & Majetich, G. (1986). Application of commercial microwave ovens to organic synthesis. Tetrahedron Letters, 27, 4945–4948.CrossRefGoogle Scholar
  15. 15.
    Park, S. J., Kim, S., Lee, S., Khim, Z. G., Char, K., & Hyeon, T. (2000). Synthesis and magnetic studies of uniform iron nanorods and nanospheres. Journal of the American Chemical Society, 122(35), 8581–8582.CrossRefGoogle Scholar
  16. 16.
    Sun, S., & Zeng, H. (2002). Size-controlled synthesis of magnetite nanoparticles. JACS, 124, 8204–8205.CrossRefGoogle Scholar
  17. 17.
    Goya, G. F., Berquo, T. S., Fonseca, F. C., & Morales, M. P. (2003). Static and dynamic magnetic properties of spherical magnetite nanoparticles. Journal of Applied Physics, 94, 3520–3528.CrossRefGoogle Scholar
  18. 18.
    Palomo, J., & Filice, M. (2016). Biosynthesis of metal nanoparticles: novel efficient heterogeneous nanocatalysts. Nanomaterials, 6, 84.CrossRefGoogle Scholar
  19. 19.
    Bhargava A, Jain N, Panwar J (2011) Synthesis and application of magnetic nanoparticles: a biological perspective. In: Dhingra HK, Jha PN, Bajpai P (eds) Current topics in biotechnology and microbiology: recent trends. Lap Lambert Academic Publishing AG & Co Kg, Colne, pp 117–155.Google Scholar
  20. 20.
    Das, P., Mahanty, S., Ganguli, A., Das, P., & Chaudhuri, P. (2019). Role of manglicolous fungi isolated from Indian Sundarban mangrove forest for the treatment of metal containing solution: batch and optimization using response surface methodology. Environmental Technology and Innovation, 13, 166–178.CrossRefGoogle Scholar
  21. 21.
    Teja, A. S., & Koh, P. Y. (2009). Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in Crystal Growth and Characterization of Materials, 55, 22–45.CrossRefGoogle Scholar
  22. 22.
    Hoag, G. E., Collins, J. B., Holcomb, J. L., Hoag, J. R., Nadagouda, M. N., & Varma, R. S. (2009). Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry, 19, 8671–8677.CrossRefGoogle Scholar
  23. 23.
    Pattanayak, M., & Nayak, P. L. (2013). Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Azadirachta indica (Neem). World Journal of Nano Science & Technology, 2(1), 06–09.Google Scholar
  24. 24.
    Rao, A., Bankar, A., Kumar, A. R., Gosavi, S., & Zinjarde, S. (2013). Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles. Journal of Contaminant Hydrology, 146, 63–73.CrossRefGoogle Scholar
  25. 25.
    Bharde, A., Wani, A., Shouche, Y., Joy, P. A., Prasad, B. L., & Sastry, M. (2005). Bacterial aerobic synthesis of nanocrystalline magnetite. JACS, 127, 9326–9327.CrossRefGoogle Scholar
  26. 26.
    Mohamed, Y. M., Azzam, A. M., Amin, B. H., & Safwat, N. A. (2015). Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. African Journal of Biotechnology, 14, 1234–1241.CrossRefGoogle Scholar
  27. 27.
    Subramaniyam, V., Subashchandrabose, S. R., Thavamani, P., Megharaj, M., Chen, Z., & Naidu, R. (2015). Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. Journal of Applied Phycology, 27, 861–1869.CrossRefGoogle Scholar
  28. 28.
    Gade, A., Ingle, A., Whiteley, C., & Rai, M. (2010). Mycogenic metal nanoparticles: progress and applications. Biotechnology Letters, 32, 593–600.CrossRefGoogle Scholar
  29. 29.
    Bharde, A., Rautaray, D., Bansal, V., Ahmad, A., Sarkar, I., Yusuf, S. M., & Sastry, M. (2006). Extracellular biosynthesis of magnetite using fungi. Small, 2, 135–141.CrossRefGoogle Scholar
  30. 30.
    Tarafdar, J. C., & Raliya, R. (2013). Rapid, low-cost, and ecofriendly approach for iron nanoparticle synthesis using Aspergillus oryzae TFR9. Journal of Nanoparticles.
  31. 31.
    Bhargava, A., Jain, N., Barathi, M., Akhtar, M. S., Yun, Y. S., & Panwar, J. (2013). Synthesis, characterization and mechanistic insights of mycogenic iron oxide nanoparticles. Journal of Nanoparticle Research, 15, 2031.CrossRefGoogle Scholar
  32. 32.
    Kathiresan, K., Manivannan, S., Nabeel, M. A., & Dhivya, B. (2009). Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids and Surfaces. B, Biointerfaces, 71, 133–137.CrossRefGoogle Scholar
  33. 33.
    Saha, S., Sarkar, J., Chattopadhyay, D., Patra, S., Chakraborty, A., et al. (2010). Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodules and its antimicrobial activity. Digest Journal of Nanomaterials and Biostructures, 5, 887–895.Google Scholar
  34. 34.
    Sarkar, J., Chattopadhyay, D., Patra, S., Deo, S. S., Sinha, S., et al. (2011a). Alternaria alternata mediated synthesis of protein capped silver nanoparticles and their genotoxic activity. Digest Journal of Nanomaterials and Biostructures, 6, 563–573.Google Scholar
  35. 35.
    Sridhar K R (2013) Mangrove fungal diversity of west coast of India. Mangroves of India: their biology and uses, 161–182.Google Scholar
  36. 36.
    Gopal, B., & Chauhan, M. (2006). Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquatic Sciences, 68, 338–354.CrossRefGoogle Scholar
  37. 37.
    Hyde, K. D., & Jones, E. B. G. (1988). Marine mangrove fungi. Marine Ecology, 9, 15–33. Scholar
  38. 38.
    Jones, E. B. G. (2000). Marine fungi: some factors influencing biodiversity. Fungal Diversity, 4, 53–73.Google Scholar
  39. 39.
    Kohlmeyer, J., & Kohlmeyer, E. (1979). Marine mycology. The higher fungi. New York: Academic Press.Google Scholar
  40. 40.
    Findlay, S., Smith, P. J., & Meyer, J. L. (1986). Effect of detritus addition on metabolism of river sediment. Hydrobiologia, 137, 257–263.CrossRefGoogle Scholar
  41. 41.
    Barnett, H. L., & Hunter, B. B. (1972). Illustrated genera of imperfect fungi. Minneapolis: Burgess publishing company.Google Scholar
  42. 42.
    Domsch, K. H., Gams, W., & Anderson, T. H. (1980). Compandium of soil fungi. Vols. 1 and 2. London: Academic Press.Google Scholar
  43. 43.
    Watanabe T (2010) Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. CRC press.Google Scholar
  44. 44.
    Aamir, S., Sutar, S., Singh, S. K., & Baghela, A. (2015). A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathology & Quarantine, 5, 74–81.CrossRefGoogle Scholar
  45. 45.
    White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylo- genetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols a guide to methods and applications (pp. 315–322). San Diego: Academic aPress. Scholar
  46. 46.
    Qin, Z., Joo, J., Gu, L., & Sailor, M. J. (2014). Size control of porous silicon nanoparticles by electrochemical perforation etching. Particle and Particle Systems Characterization, 31, 252–256.CrossRefGoogle Scholar
  47. 47.
    Kozlov, N. K., Natashina, U. A., Tamarov, K. P., Gongalsky, M. B., et al. (2017). Recycling of silicon: From industrial waste to biocompatible nanoparticles for nanomedicine. Mater Res Express, 4, 095026.CrossRefGoogle Scholar
  48. 48.
    Gottimukkala, K. S. V. (2017). Green synthesis of iron nanoparticles using green tea leaves extract. Journal of Nanomedicine & Biotherapeutic Discovery, 7, 151. Scholar
  49. 49.
    Mazumdar, H., & Haloi, N. (2017). A study on biosynthesis of iron nanoparticles by Pleurotus sp. Journal of Microbiology and Biotechnology Research, 1, 39–49.Google Scholar
  50. 50.
    Basu, S., & Chakravorty, D. (2006). Optical properties of nanocomposites with iron core–iron oxide shell structure. Journal of Non-Crystalline Solids, 352, 380–385.CrossRefGoogle Scholar
  51. 51.
    Guo, L., Huang, Q., Li, X. Y., & Yang, S. (2001). Iron nanoparticles: synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Physical Chemistry Chemical Physics, 3, 1661–1665.CrossRefGoogle Scholar
  52. 52.
    Morgada, M. E., Levy, I. K., Salomone, V., Farías, S. S., López, G., & Litter, M. I. (2009). Arsenic (V) removal with nanoparticulate zerovalent iron: effect of UV light and humic acids. Catalysis Today, 143, 261–268.CrossRefGoogle Scholar
  53. 53.
    Namduri, H., & Nasrazadani, S. (2008). Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corrosion Science, 50, 2493–2497.CrossRefGoogle Scholar
  54. 54.
    Macdonald, I. D. G., & Smith, W. E. (1996). Orientation of cytochrome c adsorbed on a citrate-reduced silver colloid surface. Langmuir, 12, 706–713.CrossRefGoogle Scholar
  55. 55.
    Yang, T., Li, Z., Wang, L., Guo, C., & Sun, Y. (2007). Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles. Langmuir, 23, 10533–10538.CrossRefGoogle Scholar
  56. 56.
    Rangnekar, A., Sarma, T. K., Singh, A. K., Deka, J., Ramesh, A., & Chattopadhyay, A. (2007). Retention of enzymatic activity of α-amylase in the reductive synthesis of gold nanoparticles. Langmuir, 23, 5700–5706.CrossRefGoogle Scholar
  57. 57.
    Wang, Y., Maksimuk, S., Shen, R., & Yang, H. (2007). Synthesis of iron oxide nanoparticles using a freshly-made or recycled imidazolium-based ionic liquid. Green Chemistry, 9, 1051–1056.CrossRefGoogle Scholar
  58. 58.
    El-Lateef, H. M. A., Touny, A. H., & Saleh, M. M. (2018). Synthesis of crystalline and amorphous iron phosphate nanoparticles by simple low-temperature method. Materials Research Express, 6(3), 035030.CrossRefGoogle Scholar
  59. 59.
    Kappes, B. B., Meacham, B. E., Tang, Y. L., & Branagan, D. J. (2003). Relaxation, recovery, crystallization, and recrystallization transformations in an iron-based amorphous precursor. Nanotechnology, 14, 1228.CrossRefGoogle Scholar
  60. 60.
    Baumgartner, J., Dey, A., Bomans, P. H., et al. (2013). Nucleation and growth of magnetite from solution. Nature Materials, 12, 310.CrossRefGoogle Scholar
  61. 61.
    Thanh, N. T., Maclean, N., & Mahiddine, S. (2014). Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 114, 7610–7630.CrossRefGoogle Scholar
  62. 62.
    Nidhin, M., Indumathy, R., Sreeram, K. J., & Nair, B. U. (2008). Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bulletin of Materials Science, 31, 93–96.CrossRefGoogle Scholar
  63. 63.
    Shahwan, T., Sirriah, S. A., Nairat, M., Boyacı, E., Eroğlu, A. E., & Scott TB Hallam, K. R. (2011). Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal, 172, 258–266.CrossRefGoogle Scholar
  64. 64.
    Hashimoto, H., Yokoyama, S., Asaoka, H., et al. (2007). Characteristics of hollow microtubes consisting of amorphous iron oxide nanoparticles produced by iron oxidizing bacteria, Leptothrix ochracea. Journal of Magnetism and Magnetic Materials, 310, 2405–2407.CrossRefGoogle Scholar
  65. 65.
    Sugimoto, T., & Matijević, E. (1980). Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. Journal of Colloid and Interface Science, 74, 227–243.CrossRefGoogle Scholar
  66. 66.
    Hasany, S. F., Ahmed, I., Rajan, J., & Rehman, A. (2012). Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanoscience and Nanotechnology, 2, 148–158. Scholar
  67. 67.
    Xu, H., Wang, X., & Zhang, L. (2008). Selective preparation of nanorods and micro-octahedrons of Fe2O3 and their catalytic performances for thermal decomposition of ammonium perchlorate. Powder Technology, 185, 176–180.CrossRefGoogle Scholar
  68. 68.
    Joseyphus, R. J., Shinoda, K., Kodama, D., & Jeyadevan, B. (2010). Size controlled Fe nanoparticles through polyol process and their magnetic properties. Materials Chemistry and Physics, 123, 487–493.CrossRefGoogle Scholar
  69. 69.
    Wu, S., Sun, A., Zhai, F., Wang, J., Xu, W., Zhang, Q., & Volinsky, A. A. (2011). Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Materials Letters, 65(12), 1882–1884.CrossRefGoogle Scholar
  70. 70.
    Salazar-Alvarez, G., Muhammed, M., & Zagorodni, A. A. (2006). Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chemical Engineering Science, 61, 4625–4633.CrossRefGoogle Scholar
  71. 71.
    Starowicz, M., Starowicz, P., Żukrowski, J., Przewoźnik, J., et al. (2011). Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size. Journal of Nanoparticle Research, 13, 7167–7176.CrossRefGoogle Scholar
  72. 72.
    Hu, X., Yu, J. C., Gong, J., Li, Q., & Li, G. (2007). α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Advanced Materials, 19, 2324–2329.CrossRefGoogle Scholar
  73. 73.
    Phumying, S., Labuayai, S., Thomas, C., Amornkitbamrung, V., Swatsitang, E., & Maensiri, S. (2013). Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles. Applied Physics A, 111(4), 1187–1193.CrossRefGoogle Scholar
  74. 74.
    Madhavi, V., Prasad, T. N., et al. (2013). Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochimica Acta A, 116, 17–25.CrossRefGoogle Scholar
  75. 75.
    Wang, Z., Fang, C., & Mallavarapu, M. (2015). Characterization of iron–polyphenol complex nanoparticles synthesized by sage (Salvia officinalis) leaves. Environmental Technology and Innovation, 4, 92–97.CrossRefGoogle Scholar
  76. 76.
    Kaul, R. K., Kumar, P., Burman, U., Joshi, P., et al. (2012). Magnesium and iron nanoparticles production using microorganisms and various salts. Materials Science - Poland, 30, 254–258.CrossRefGoogle Scholar
  77. 77.
    Pavani, K. V., & Kumar, N. S. (2013). Adsorption of iron and synthesis of iron nanoparticles by Aspergillus species kvp 12. Am J Nanomater, 1, 24–26.Google Scholar
  78. 78.
    Sundaram, P. A., Augustine, R., & Kannan, M. (2012). Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnology and Bioprocess Engineering, 17(4), 835–840.CrossRefGoogle Scholar
  79. 79.
    Mahdavi, M., Namvar, F., Ahmad, M. B., & Mohamad, R. (2013). Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 18, 5954–5964.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shouvik Mahanty
    • 1
  • Madhurima Bakshi
    • 1
  • Somdeep Ghosh
    • 1
  • Shreosi Chatterjee
    • 2
  • Subarna Bhattacharyya
    • 3
  • Papita Das
    • 4
  • Surajit Das
    • 2
  • Punarbasu Chaudhuri
    • 1
    Email author
  1. 1.Department of Environmental ScienceUniversity of CalcuttaKolkataIndia
  2. 2.Department of Life Science, NIT RourkelaRourkelaIndia
  3. 3.School of Environmental StudiesJadavpur UniversityKolkataIndia
  4. 4.Department of Chemical EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations