Advertisement

BioNanoScience

, Volume 9, Issue 3, pp 553–563 | Cite as

Comparative Analysis of Toxicity Induced by Different Synthetic Silver Nanoparticles in Albino Mice

  • Atif YaqubEmail author
  • Sarwar Allah Ditta
  • Khalid Mahmood Anjum
  • Fouzia Tanvir
  • Naila Malkani
  • Muhammad Zubair Yousaf
Article
  • 58 Downloads

Abstract

Use of nanoparticles for various industrial and biomedical applications has emerged in recent years rapidly, but their accumulation in the environment has raised concerns for their ecotoxicological profile. Instead of halting their use, emphasis should be laid to the development of safer nanoparticles. We prepared silver nanoparticles (AgNPs) by chemical synthesis as well by green synthesis method using Ocimum tenuiflorum L. plant. Characterization of green synthesized silver nanoparticles (G. AgNPs) and chemically synthesized silver nanoparticles (C. AgNPs) was performed; UV-visible confirmed the optical absorption peaks at 425 nm (G. AgNPs) and 416 nm (C. AgNPs). SEM imaging confirmed the spherical shaped G. AgNPs (40–60 nm) and C. AgNPs (30–40 nm) with average sizes. FTIR analysis of G. AgNPs confirmed that alkene and aromatic compounds played an important role as capping and reducing agent. We also attempted to evaluate the toxicity profile using a mammalian model, male albino mice (BALB/c)x LD50 of the G. AgNPs and C. AgNPs for mice were found to be 812 mg/kg and 575 mg/kg of the body weight respectively. Liver enzymes were studied from liver tissue and blood serum samples collected from G. AgNP-treated and C. AgNP (100 mg/kg dose)-treated mice for 21 days. We observed a significant decrease in catalase (72.8 versus 86) and GST (0.4 versus 0.32) for G. AgNPs vs C. AgNPs respectively; whereas an increase of SOD is reported (3.05 vs 2.26 respectively). Hence, the development of nanoparticles by green synthesis may be the safer, cost-effective, and eco-friendly option as compared to chemical synthesis.

Keywords

Green synthesis Silver nanoparticles Acute toxicity Oxidative stress Superoxide dismutase Catalase Glutathione-S-transferase 

Notes

Acknowledgments

The authors acknowledge Prof. Dr. Riaz Ahmad (Department of Physics) and Prof. Dr. Shazia Bashir (CASP), Government College University, Lahore, for providing facilities of characterization of nanoparticles.

Compliance with Ethical Standards

Animal care and handling were followed the official guidelines of OECD and was submitted by the Ethics Committee of the Government College University, Lahore, Pakistan.

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Funding Statement

None.

References

  1. 1.
    Handy, R. D., Owen, R., & Valsami-Jones, E. (2008). The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology, 17(5), 315–325.Google Scholar
  2. 2.
    Scown, T. M., Santos, E. M., Johnston, B. D., Gaiser, B., Baalousha, M., Mitov, S., Lead, J. R., Stone, V., Fernandes, T. F., & Jepson, M. (2010). Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicological Sciences, 115(2), 521–534.Google Scholar
  3. 3.
    Pettitt, M. E., & Lead, J. R. (2013). Minimum physicochemical characterization requirements for nanomaterial regulation. Environment International, 52, 41–50.Google Scholar
  4. 4.
    Song, J. Y., & Kim, B. S. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32(1), 79.Google Scholar
  5. 5.
    Kreyling, W. G., Semmler-Behnke, M., & Chaudhry, Q. (2010). A complementary definition of nanomaterial. Nano Today, 5(3), 165–168.Google Scholar
  6. 6.
    Skrabalak, S. E., Chen, J., Sun, Y., Lu, X., Au, L., Cobley, C. M., & Xia, Y. (2008). Gold nanocages: synthesis, properties, and applications. Accounts of Chemical Research, 41(12), 1587–1595.Google Scholar
  7. 7.
    Wyszogrodzka, G., Marszałek, B., Gil, B., & Dorożyński, P. (2016). Metal-organic frameworks: mechanisms of antibacterial action and potential applications. Drug Discovery Today, 21(6), 1009–1018.Google Scholar
  8. 8.
    Nair, L. S., & Laurencin, C. T. (2007). Silver nanoparticles: synthesis and therapeutic applications. Journal of Biomedical Nanotechnology, 3(4), 301–316.Google Scholar
  9. 9.
    Govindhan, M., Liu, Z., & Chen, A. (2016). Design and electrochemical study of platinum-based nanomaterials for sensitive detection of nitric oxide in biomedical applications. Nanomaterials, 6(11), 211.Google Scholar
  10. 10.
    Kanninen, P., Luong, N. D., Flórez-Montaño, J., Jiang, H., Pastor, E., Seppälä, J., & Kallio, T. (2017). Highly active platinum nanoparticles supported by nitrogen/sulfur functionalized graphene composite for ethanol electro-oxidation. Electrochimica Acta, 242, 315–326.Google Scholar
  11. 11.
    Xiong, Y., & Xia, Y. (2007). Shape-controlled synthesis of metal nanostructures: the case of palladium. Advanced Materials, 19(20), 3385–3391.Google Scholar
  12. 12.
    Karimi, R., Yousefi, F., Ghaedi, M., Dashtian, K., & Montazerozohori, M. (2017). Efficient adsorption of erythrosine and sunset yellow onto modified palladium nanoparticles with a 2-diamine compound: Application of multivariate technique. Journal of Industrial and Engineering Chemistry, 48, 43–55.Google Scholar
  13. 13.
    Coelho, S. G., Patri, A. K., Wokovich, A. M., McNeil, S. E., Howard, P. C., & Miller, S. A. (2016). Repetitive application of sunscreen containing titanium dioxide nanoparticles on human skin. JAMA Dermatology, 152(4), 470–472.Google Scholar
  14. 14.
    Mahmoud, W. M., Rastogi, T., & Kümmerer, K. (2017). Application of titanium dioxide nanoparticles as a photocatalyst for the removal of micropollutants such as pharmaceuticals from water. Current Opinion in Green and Sustainable Chemistry, 6, 1–10.Google Scholar
  15. 15.
    Tantra, R., Jing, S., Pichaimuthu, S. K., Walker, N., Noble, J., & Hackley, V. A. (2011). Dispersion stability of nanoparticles in ecotoxicological investigations: the need for adequate measurement tools. Journal of Nanoparticle Research, 13(9), 3765–3780.Google Scholar
  16. 16.
    Ahamed, M., Posgai, R., Gorey, T. J., Nielsen, M., Hussain, S. M., & Rowe, J. J. (2010). Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicology and Applied Pharmacology, 242(3), 263–269.Google Scholar
  17. 17.
    Choi, J. E., Kim, S., Ahn, J. H., Youn, P., Kang, J. S., Park, K., Yi, J., & Ryu, D.-Y. (2010). Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquatic Toxicology, 100(2), 151–159.Google Scholar
  18. 18.
    Gülçin, İ., Oktay, M., Küfrevioğlu, Ö. İ., & Aslan, A. (2002). Determination of antioxidant activity of lichen Cetraria islandica (L) Ach. Journal of Ethnopharmacology, 79(3), 325–329.Google Scholar
  19. 19.
    Jayanthi, P., & Lalitha, P. (2011). Reducing power of the solvent extracts of Eichhornia crassipes (Mart.) Solms. International Journal of Pharmacy and Pharmaceutical Sciences, 3(3), 126–128.Google Scholar
  20. 20.
    Hayashi, Y., Heckmann, L.-H., Simonsen, V., & Scott-Fordsmand, J. J. (2013). Time-course profiling of molecular stress responses to silver nanoparticles in the earthworm Eisenia fetida. Ecotoxicology and Environmental Safety, 98, 219–226.Google Scholar
  21. 21.
    Ahn, J.-M., Eom, H.-J., Yang, X., Meyer, J. N., & Choi, J. (2014). Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans. Chemosphere, 108, 343–352.Google Scholar
  22. 22.
    Ghosh, M., Manivannan, J., Sinha, S., Chakraborty, A., Mallick, S. K., Bandyopadhyay, M., & Mukherjee, A. (2012). In vitro and in vivo genotoxicity of silver nanoparticles. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 749(1), 60–69.Google Scholar
  23. 23.
    Massarsky, A., Dupuis, L., Taylor, J., Eisa-Beygi, S., Strek, L., Trudeau, V. L., & Moon, T. W. (2013). Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere, 92(1), 59–66.Google Scholar
  24. 24.
    Staples, G. Kristiansen MS (1999) Ethnic culinary herbs; a guide to identification and cultivation in Hawai'i/; George W. Staples, Michael S. Kristiansen.i. University of Hawaii Press.Google Scholar
  25. 25.
    Mondal, S., Mirdha, B. R., & Mahapatra, S. C. (2009). The science behind sacredness of Tulsi (Ocimum sanctum Linn.). Indian Journal of Physiology and Pharmacology, 53(4), 291–306.Google Scholar
  26. 26.
    Bindhani, B. K., & Panigrahi, A. K. (2015). Biosynthesis and characterization of silver nanoparticles (SNPs) by using leaf extracts of Ocimum Sanctum L (Tulsi) and study of its antibacterial activities. Journal of Nanomedicine & Nanotechnology, (S6), 1.Google Scholar
  27. 27.
    Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A. R., & Singh, R. P. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13(7), 2981–2988.Google Scholar
  28. 28.
    Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55–75.Google Scholar
  29. 29.
    Al Gurabi, M. A., Ali, D., Alkahtani, S., & Alarifi, S. (2015). In vivo DNA damaging and apoptotic potential of silver nanoparticles in Swiss albino mice. OncoTargets and Therapy, 8, 295.Google Scholar
  30. 30.
    Guideline, O. O. (2001). 425: acute oral toxicity—Up-and-down procedure. OECD Guidelines for the Testing of Chemicals, 2, 12–16.Google Scholar
  31. 31.
    Hodge A, Sterner B (2005) Toxicity classes in Canadian Centre for Occupational Health and Safety. Retrieved from http://www. ccohs. ca/oshanswers/chemicals/id50. htm.Google Scholar
  32. 32.
    Javed, M., Usmani, N., Ahmad, I., & Ahmad, M. (2015). Studies on the oxidative stress and gill histopathology in Channa punctatus of the canal receiving heavy metal-loaded effluent of Kasimpur Thermal Power Plant. Environmental Monitoring and Assessment, 187(1), 4179.Google Scholar
  33. 33.
    Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469–474.Google Scholar
  34. 34.
    Daniel, S., Kumar, R., Sathish, V., Sivakumar, M., Sunitha, S., & Sironmani, T. A. (2011). Green synthesis (Ocimum tenuiflorum) of silver nanoparticles and toxicity studies in zebra fish (Danio rerio) model. International Journal of Nanoscience and Nanotechnology, 2, 103–117.Google Scholar
  35. 35.
    Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275(2), 496–502.Google Scholar
  36. 36.
    Mock, J., Barbic, M., Smith, D., Schultz, D., & Schultz, S. (2002). Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics, 116(15), 6755–6759.Google Scholar
  37. 37.
    Ahmad, N., Sharma, S., Alam, M. K., Singh, V., Shamsi, S., Mehta, B., & Fatma, A. (2010). Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids and Surfaces B: Biointerfaces, 81(1), 81–86.Google Scholar
  38. 38.
    Awwad, A. M., Salem, N. M., & Abdeen, A. O. (2013). Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. International Journal of Industrial Chemistry, 4(1), 29.Google Scholar
  39. 39.
    Borah, D., Deka, P., Bhattacharjee, P., Changmai, A., & Yadav, R. (2013). Ocimum sanctum mediated silver nanoparticles showed better antimicrobial activities compared to citrate stabilized silver nanoparticles against multidrug-resistant bacteria. Journal of Pharmacy Research, 7(6), 478–482.Google Scholar
  40. 40.
    Banerjee, P., Satapathy, M., Mukhopahayay, A., & Das, P. (2014). Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources and Bioprocessing, 1(1), 3.Google Scholar
  41. 41.
    Brahmachari, G., Sarkar, S., Ghosh, R., Barman, S., Mandal, N. C., Jash, S. K., Banerjee, B., & Roy, R. (2014). Sunlight-induced rapid and efficient biogenic synthesis of silver nanoparticles using aqueous leaf extract of Ocimum sanctum Linn. with enhanced antibacterial activity. Organic and Medicinal Chemistry Letters, 4(1), 18.Google Scholar
  42. 42.
    Malapermal, V., Botha, I., Krishna, S. B. N., & Mbatha, J. N. (2017). Enhancing antidiabetic and antimicrobial performance of Ocimum basilicum, and Ocimum sanctum (L.) using silver nanoparticles. Saudi Journal of Biological Sciences, 24(6), 1294–1305.Google Scholar
  43. 43.
    Ghaffari-Moghaddam, M., Hadi-Dabanlou, R., Khajeh, M., Rakhshanipour, M., & Shameli, K. (2014). Green synthesis of silver nanoparticles using plant extracts. Korean Journal of Chemical Engineering, 31(4), 548–557.Google Scholar
  44. 44.
    Sadanand, V., Rajini, N., Satyanarayana, B., & Rajulu, A. V. (2016). Preparation and properties of cellulose/silver nanoparticle composites within situ-generated silver nanoparticles using Ocimum sanctum leaf extract. International Journal of Polymer Analysis and Characterization, 21(5), 408–416.Google Scholar
  45. 45.
    Jha, P. K., Jha, R. K., Rout, D., Gnanasekar, S., Rana, S. V., & Hossain, M. (2017). Potential targetability of multi-walled carbon nanotube-loaded with silver nanoparticles photosynthesized from Ocimum tenuiflorum (tulsi extract) in fertility diagnosis. Journal of Drug Targeting, 25(7), 616–625.Google Scholar
  46. 46.
    Khan, M., Tarek, F., Nuzat, M., Momin, M., & Hasan, M. (2017). Rapid biological synthesis of silver nanoparticles from Ocimum sanctum and their characterization. Journal of Nanoscience, 2017.Google Scholar
  47. 47.
    Dehnavi, A. S., Aroujalian, A., Raisi, A., & Fazel, S. (2013). Preparation and characterization of polyethylene/silver nanocomposite films with antibacterial activity. Journal of Applied Polymer Science, 127(2), 1180–1190.Google Scholar
  48. 48.
    Stamplecoskie, K. G., & Scaiano, J. C. (2010). Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. Journal of the American Chemical Society, 132(6), 1825–1827.Google Scholar
  49. 49.
    Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12(3), 788–800.Google Scholar
  50. 50.
    Jensen, T. R., Malinsky, M. D., Haynes, C. L., & Van Duyne, R. P. (2000). Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. The Journal of Physical Chemistry. B, 104(45), 10549–10556.Google Scholar
  51. 51.
    Abdel-Aziz, M. S., Shaheen, M. S., El-Nekeety, A. A., & Abdel-Wahhab, M. A. (2014). Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. Journal of Saudi Chemical Society, 18(4), 356–363.Google Scholar
  52. 52.
    Rao, Y. S., Kotakadi, V. S., Prasad, T., Reddy, A., & Gopal, D. S. (2013). Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 103, 156–159.Google Scholar
  53. 53.
    Rajakumar, G., & Rahuman, A. A. (2011). Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Tropica, 118(3), 196–203.Google Scholar
  54. 54.
    Elavazhagan, T., & Arunachalam, K. D. (2011). Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. International Journal of Nanomedicine, 6, 1265.Google Scholar
  55. 55.
    Song, J. Y., Kwon, E.-Y., & Kim, B. S. (2012). Antibacterial latex foams coated with biologically synthesized silver nanoparticles using Magnolia kobus leaf extract. Korean Journal of Chemical Engineering, 29(12), 1771–1775.Google Scholar
  56. 56.
    Vahabi, K., Mansoori, G. A., & Karimi, S. (2011). Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences Journal, 1(1), 65–79.Google Scholar
  57. 57.
    Vignesh, V., Anbarasi, K. F., Karthikeyeni, S., Sathiyanarayanan, G., Subramanian, P., & Thirumurugan, R. (2013). A superficial phyto-assisted synthesis of silver nanoparticles and their assessment on hematological and biochemical parameters in Labeo rohita (Hamilton, 1822). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439, 184–192.Google Scholar
  58. 58.
    Vijaya, P., Rekha, B., Mathew, A. T., Ali, M. S., Yogananth, N., Anuradha, V., & Parveen, P. K. (2014). Antigenotoxic effect of green-synthesised silver nanoparticles from Ocimum sanctum leaf extract against cyclophosphamide induced genotoxicity in human lymphocytes—in vitro. Applied Nanoscience, 4(4), 415–420.Google Scholar
  59. 59.
    Jacob, S. J. P., Finub, J., & Narayanan, A. (2012). Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids and Surfaces B: Biointerfaces, 91, 212–214.Google Scholar
  60. 60.
    Niraimathi, K., Sudha, V., Lavanya, R., & Brindha, P. (2013). Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids and Surfaces B: Biointerfaces, 102, 288–291.Google Scholar
  61. 61.
    Mallikarjuna, K., Narasimha, G., Dillip, G., Praveen, B., Shreedhar, B., Lakshmi, C. S., Reddy, B., & Raju, B. D. P. (2011). Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Digest Journal of Nanomaterials and Biostructures, 6(1), 181–186.Google Scholar
  62. 62.
    Li, S., Shen, Y., Xie, A., Yu, X., Zhang, X., Yang, L., & Li, C. (2007). Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract. Nanotechnology, 18(40), 405101.Google Scholar
  63. 63.
    Krishnaraj, C., Jagan, E., Rajasekar, S., Selvakumar, P., Kalaichelvan, P., & Mohan, N. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces, 76(1), 50–56.Google Scholar
  64. 64.
    Kasthuri, J., Kathiravan, K., & Rajendiran, N. (2009). Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. Journal of Nanoparticle Research, 11(5), 1075–1085.Google Scholar
  65. 65.
    Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., & He, N. (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18(10), 105104.Google Scholar
  66. 66.
    Zhou, Y., Lin, W., Huang, J., Wang, W., Gao, Y., Lin, L., Li, Q., Lin, L., & Du, M. (2010). Biosynthesis of gold nanoparticles by foliar broths: roles of biocompounds and other attributes of the extracts. Nanoscale Research Letters, 5(8), 1351.Google Scholar
  67. 67.
    Awwad, A. M., Salem, N. M., & Abdeen, A. O. (2012). Biosynthesis of silver nanoparticles using Olea europaea leaves extract and its antibacterial activity. Nanoscience and Nanotechnology, 2(6), 164–170.Google Scholar
  68. 68.
    Amin, Y. M., Hawas, A. M., El-Batal, A., & Elsayed, S. H. H. E. (2015). Evaluation of acute and subchronic toxicity of silver nanoparticles in normal and irradiated animals. British Journal of Pharmacology and Toxicology, 6(2), 22–38.Google Scholar
  69. 69.
    Elkhawass, E., Mohallal, M., & Soliman, M. (2015). Acute toxicity of different sizes of silver nanoparticles intraperitonally injected in Balb/C mice using two toxicological methods. International Journal of Pharmacy and Pharmaceutical Sciences, 7(2), 94–99.Google Scholar
  70. 70.
    Lee, Y.-H., Cheng, F.-Y., Chiu, H.-W., Tsai, J.-C., Fang, C.-Y., Chen, C.-W., & Wang, Y.-J. (2014). Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials, 35(16), 4706–4715.Google Scholar
  71. 71.
    Monte, M., Davel, L., & de Lustig, E. S. (1997). Hydrogen peroxide is involved in lymphocyte activation mechanisms to induce angiogenesis. European Journal of Cancer, 33(4), 676–682.Google Scholar
  72. 72.
    Nonaka, Y., Iwagaki, H., Kimura, T., Fuchimoto, S., & Orita, K. (1993). Effect of reactive oxygen intermediates on the in vitro invasive capacity of tumor cells and liver metastasis in mice. International Journal of Cancer, 54(6), 983–986.Google Scholar
  73. 73.
    Yoshizaki, N., Mogi, Y., Muramatsu, H., Koike, K., Kogawa, K., & Niitsu, Y. (1994). Suppressive effect of recombinant human cu, Zn-superoxide dismutase on lung metastasis of murtne tumor cells. International Journal of Cancer, 57(2), 287–292.Google Scholar
  74. 74.
    Ashok, I., Sheeladevi, R., & Wankhar, D. (2015). Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain. Journal of Biomedical Research, 29(5), 390.Google Scholar
  75. 75.
    Smitha, K., & Mukkadan, J. (2014). Effect of different forms of acute stress in the generation of reactive oxygen species in albino wistar rats. Indian Journal of Physiology and Pharmacology, 58(3), 228–231.Google Scholar
  76. 76.
    Jamakala, O., & Rani, U. A. (2015). Amelioration effect of zinc and iron supplementation on selected oxidative stress enzymes in liver and kidney of cadmium-treated male albino rat. Toxicology International, 22(1), 1.Google Scholar
  77. 77.
    Kim, S., Choi, J. E., Choi, J., Chung, K.-H., Park, K., Yi, J., & Ryu, D.-Y. (2009). Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicology In Vitro, 23(6), 1076–1084.Google Scholar
  78. 78.
    Yin, N., Liu, Q., Liu, J., He, B., Cui, L., Li, Z., Yun, Z., Qu, G., Liu, S., & Zhou, Q. (2013). Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. Small, 9(9–10), 1831–1841.Google Scholar
  79. 79.
    Negahdary, M., Chelongar, R., Zadeh, S. K., & Ajdary, M. (2015). The antioxidant effects of silver, gold, and zinc oxide nanoparticles on male mice in vivo condition. Advanced Biomedical Research, 69(4).Google Scholar
  80. 80.
    El-Newary, S. A., Sulieman, A., El-Attar, S., & Sitohy, M. (2016). Hypolipidemic and antioxidant activity of the aqueous extract from the uneaten pulp of the fruit from Cordia dichotoma in healthy and hyperlipidemic Wistar albino rats. Journal of Natural Medicines, 70(3), 539–553.Google Scholar
  81. 81.
    Wu, Y., & Zhou, Q. (2013). Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environmental Toxicology and Chemistry, 32(1), 165–173.Google Scholar
  82. 82.
    Arya, E., Saha, S., Saraf, S. A., & Kaithwas, G. (2013). Effect of Perilla frutescens fixed oil on experimental esophagitis in albino Wistar rats. BioMed Research International, 2013.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Atif Yaqub
    • 1
    Email author
  • Sarwar Allah Ditta
    • 1
  • Khalid Mahmood Anjum
    • 2
  • Fouzia Tanvir
    • 1
  • Naila Malkani
    • 1
  • Muhammad Zubair Yousaf
    • 3
  1. 1.Department of ZoologyGovernment College UniversityLahorePakistan
  2. 2.Department of Wildlife and Ecologythe University of Veterinary and Animal SciencesLahorePakistan
  3. 3.Department of Biological SciencesF.C. College UniversityLahorePakistan

Personalised recommendations