Numerical Examination of Gold Nanoparticles as a Drug Carrier on Peristaltic Blood Flow Through Physiological Vessels: Cancer Therapy Treatment
- 110 Downloads
- 2 Citations
Abstract
Cancer is one of the most serious diseases facing the humanity. Researchers are making every effort to eradicate this disease. Gold nanoparticles (GNPs) have been used to treat cancer as a result of effects of their quantum size and their large surface area, compared with other metal atoms in addition to the ability to absorb energy. The aim of this manuscript is to study the peristaltic transport of a couple stress nanofluid as a blood model containing gold nanoparticles as cancer treatment. The equations governing the flow of a couple stress nanofluid along with total mass, thermal energy, and gold nanoparticles are established and then simplified by using the assumption of long wavelength. Analytical and numerical solutions have been evaluated for velocity, temperature, and gold nanoparticle concentration. A comparison between analytical and numerical solutions is given. The obtained results may help to understand more the process of cancer treatment with help of gold nanoparticles.
Keywords
Peristaltic transport Gold nanoparticles Endoscope Couple stress fluidNotes
Funding Statement
None.
Compliance with Ethical Standards
Conflict of interests
None.
References
- 1.Riehemann, K., Schneider, S.W., Luger, T.A., Godin, B., Ferrari, M., Fuchs, H. (2009). Nanomedicine-challenge and perspectives. Angewandte Chemie International Edition, 48, 872–897.CrossRefGoogle Scholar
- 2.Murthy, S.K. (2007). Nanoparticles in modern medicine: state of the art and future challenges. International Journal of Nanomedicine, 2(2), 129–141.Google Scholar
- 3.Lubbe, A.S., Alexiou, C., Bergermann, C. (2001). Clinical applications of magnetic drug targeting. The Journal of Surgical Research, 95, 200–206.CrossRefGoogle Scholar
- 4.Thomas Avedisian, C., Cavicchi, R.E., McEuen, P.L., Zhouc, X. (2009). Nanoparticles for cancer treatment role of heat transfer. Interdisciplinary Transport Phenomena: Annals of the New York Academy of Sciences, 1161, 62–73.Google Scholar
- 5.Huang, X., & El-Sayed, M.A. (2010). Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research, 1, 13–28.CrossRefGoogle Scholar
- 6.Skirtach, A.G., Dejugnat, C., Braun, D., et al. (2005). The role of metal nanoparticles in remote release of encapsulated materials. Nano Letters, 5, 1371–1377.CrossRefGoogle Scholar
- 7.Ahmed, N., Shah, N.A., Ahmad, B., Shah, S.I.A., Ulhaq, S., Rahimi-Gorji, M. Transient MHD convective flow of fractional nanofluid between vertical plates. Journal of Applied and Computational Mechanics. https://doi.org/10.22055/JACM.2018.26947.1364.
- 8.Hussanan, A., Khan, I., Gorji, M.R., Khan, W.A. CNTS-water-based nanofluid over a stretching sheet. BioNanoScience. https://doi.org/10.1007/s12668-018-0592-6.CrossRefGoogle Scholar
- 9.Bezi, S., Souayeh, B., Ben-Cheikh, N., Ben-Beya, B. (2018). Numerical simulation of entropy generation due to unsteady natural convection in a semi-annular enclosure filled with nanofluid. International Journal of Heat and Mass Transfer, 124, 841–859.CrossRefGoogle Scholar
- 10.Ganesh Kumar, K., Krishnamurthy, M.R., Rudraswamy, N.G. (2018). Boundary layer flow and melting heat transfer of Prandtl fluid over a stretching surface by considering Joule heating effect. Multidiscipline Modeling in Materials and Structures. https://doi.org/10.1108/MMMS-03-2018-0055.CrossRefGoogle Scholar
- 11.Gireesha, B.J., Krishnamurthy, M.R., Ganeshkumar, K. (2019). Nonlinear radiative heat transfer and boundary layer flow of Maxwell nanofluid past stretching sheet. Journal of Nanofluids, 8(5), 1093–1102.CrossRefGoogle Scholar
- 12.Abdelsalam, S.I., & Bhatti, M.M. (2019). New insight into AuNP applications in tumor treatment and cosmetics through wavy annuli at the nanoscale. Scientific Reports, 9, Article number: 260. https://doi.org/10.1038/s41598-018-36459-0.CrossRefGoogle Scholar
- 13.Abdelsalam, S.I., & Bhatti, M.M. (2018). The impact of impinging TiO2 nanoparticles in Prandtl nanofluid along with endoscopic and variable magnetic field effects on peristaltic blood flow. Multidiscipline Modeling in Materials and Structures. https://doi.org/10.1108/MMMS-08-2017-0094.CrossRefGoogle Scholar
- 14.Akinshilo, A.T., & Sobamowo, G.M. (2017). Perturbation solutions for the study of MHD Blood as a third grade Nanofluid transporting Gold nanoparticles through a porous channel. Journal of Applied and Computational Mechanics, 3, 103–113.Google Scholar
- 15.Latham, T.W. (1966). Fluid motion in a peristaltic pump. M.Sc. Thesis, MIT, Cambridge MA.Google Scholar
- 16.Fung, T.C., & Yih, C.S. (1968). Peristaltic transport. American Society of Mechanical Engineers, 35, 669–675.CrossRefGoogle Scholar
- 17.Barton, C., & Raynor, S. (1968). Peristaltic flow in tubes. The Bulletin of Mathematical Biophysics, 30, 663–680.CrossRefGoogle Scholar
- 18.Shapiro, A.H., Jafferin, M.Y., Weinberg, S.L. (1969). Peristaltic pumping with long wavelengths at low Reynolds number. Journal of Fluid Mechanics, 37, 799–825.CrossRefGoogle Scholar
- 19.Noreen, S., Hayat, T., Alsaed, A. (2011). Study of slip and induced magnetic field on the peristaltic flow of pseudoplastic fluid. International Journal of Physical Science, 6(36), 8010–8026.CrossRefGoogle Scholar
- 20.Noreen, S., Alsaedi, A., Hayat, T. (2012). Peristaltic flow of pseudoplastic fluid in an asymmetric channel. Journal of Applied Mechanics, 79(5), 054501.CrossRefGoogle Scholar
- 21.Akram, S., Nadeem, S., Hussain, A. (2014). Effects of heat and mass transfer on peristaltic flow of a Bingham fluid in the presence of inclined magnetic field and channel with different wave forms. Journal of Magnetism and Magnetic Materials, 362, 184–92.CrossRefGoogle Scholar
- 22.Akbar, N.S. (2015). Numerical and analytical simulation of peristaltic flow of a Jeffrey-six constant fluid. Journal of Applied Analysis, 94, 1420–1438.MathSciNetCrossRefGoogle Scholar
- 23.Tripathi, D., & Anwar Beg, O. (2014). A study on peristaltic flow of nanofluids: application in drug delivery systems. International Journal of Heat and Mass Transfer, 70, 61–70.CrossRefGoogle Scholar
- 24.Hayat, T., Ali, N., Asghar, S., Siddiqui, A.M. (2006). Exact peristaltic flow in tubes with an endoscope. Applied Mathematics and Computation, 182, 359–368.MathSciNetCrossRefGoogle Scholar
- 25.Mekheimer, Kh.S., & Abdelmaboud, Y. (2008). The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: application of an endoscope. Physics Letters A, 372, 1657–1665.CrossRefGoogle Scholar
- 26.Akbar, N.S., Raza, M., Ellahi, R. (2016). Endoscopic effects with entropy generation analysis in peristalsis for the thermal conductivity of H 2O + Cu nanofluid. Journal of Applied Fluid Mechanics, 9, 1721–1730.CrossRefGoogle Scholar
- 27.Bhatti, M.M., Zeeshan, A., Ellahi, R. (2016). Endoscope analysis on peristaltic blood flow of sisko fluid with titanium magneto-nanoparticles. Communications Biologie et Mdecine, 78, 29–41.Google Scholar
- 28.Akbar, N.S., & Nadeem, S. (2012). Characteristics of heating scheme and mass transfer on the peristaltic flow for an eyring Powell fluid in an endoscope. International Journal of Heat and Mass Transfer, 55, 375–383.CrossRefGoogle Scholar
- 29.Krishna, Ch.M., Viswanatha Reddy, G., Souayeh, B., Raju, C.S.K., Rahimi-Gorji, M., Suresh Kumar Raju, S. Thermal convection of MHD Blasius and Sakiadis flow with thermal convective conditions and variable properties. Microsystem Technologies, https://doi.org/10.1007/s00542-019-04353-y.CrossRefGoogle Scholar
- 30.Sureshkumar Raju, S., Ganesh Kumar, K., Rahimi-Gorji, M., Khan, I. Darcy-Forchheimer flow and heat transfer augmentation of a viscoelastic fluid over an incessant moving needle in the presence of viscous dissipation. Microsystem Technologies, https://doi.org/10.1007/s00542-019-04340-3.CrossRefGoogle Scholar
- 31.Ogunmola, B.Y., Akinshilo, A.T., Sobamowo, M.G. (2016). Perturbation solutions for Hagen-Poiseuille flow and heat transfer of third grade fluid with temperature-dependent viscosities and internal heat generation.International Journal of Engineering Mathematics. https://doi.org/10.1155/2016/8915745.CrossRefGoogle Scholar
- 32.Sajid, M.U., & Ali, H.M. (2019). Recent advances in application of nanofluids in heat transfer devices: a critical review. Renewable and Sustainable Energy Reviews, 103, 556–592.CrossRefGoogle Scholar
- 33.Sajid, M.U., & Ali, H.M. (2018). Thermal conductivity of hybrid nanofluids: a critical review. International J. of Heat and Mass Transfer, 126, 211–234.CrossRefGoogle Scholar
- 34.El-Sayed, I.H., Huang, X., El-Sayed, M.A. (2006). Selective laser photothermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Letters, 239, 129–135.CrossRefGoogle Scholar
- 35.Petrova, H., Hu, M., Hartland, G.V. (2007). Photothermal properties of gold nanoparticles. Z Physical Chemistry, 221, 361–376.CrossRefGoogle Scholar
- 36.Bit, A., & Chattopadhyay, H. (2014). Assessment of rheological models for prediction of transport phenomena in stenosed artery. Progress in Computational Fluid Dynamics, an International Journal, 14.6, 363–374.MathSciNetCrossRefGoogle Scholar
- 37.Bit, A., & Chattopadhyay, H. (2014). Numerical investigations of pulsatile flow in stenosed artery. Acta of bioengineering and biomechanics, 16(4), 33–44.Google Scholar
- 38.Mekheimer, Kh.S., & Abd elmaboud, Y. (2008). Peristaltic flow of a couple stress fluid in an annulus: application of an endoscope. Physica A, 387, 2403–2415.CrossRefGoogle Scholar
- 39.Mekheimer, Kh. S., Hasona, W.M., Abo-Elkhair, R.E., Zaher, A.Z. (2018). Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: application of cancer therapy. Physics Letters A, 382, 85–93.MathSciNetCrossRefGoogle Scholar
- 40.Emam, T.G. (2011). Heat and mass transfer over an unsteady stretching surface embedded in a porous medium in the presence of variable chemical reaction. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 5(2), 136–140.MathSciNetGoogle Scholar
- 41.Emam, T.G., & Abd Elmaboud, Y. (2017). Three-dimensional magneto-hydrodynamic flow over an exponentially stretching surface. International Journal of Heat and Technology, 35(4), 987–996.CrossRefGoogle Scholar
- 42.Elbashbeshy, E.M.A., Emam, T.G., Abdel-wahed, M.S. (2014). Flow and heat transfer over a moving surface with nonlinear velocity and variable thickness in a nanofluid in the presence of thermal radiation. Canadian Journal de Physique, 92, 124–130.CrossRefGoogle Scholar