Advertisement

BioNanoScience

, Volume 9, Issue 3, pp 683–691 | Cite as

Glutathione S-Transferase: Purification and Characterization of from Cherry Laurel (Prunus laurocerasus L.) and the Investigation In Vitro Effects of Some Metal Ions and Organic Compounds on Enzyme Activity

  • Fikret Türkan
  • Aysenur Aygun
  • Halis ŞakiroğluEmail author
  • Fatih ŞenEmail author
Article

Abstract

In this study, the cherry laurel flesh fruit was purified to obtain glutathione S-transferase, a well-known antioxidant enzyme. Enzyme purification was performed using two separate processes: gel filtration and affinity chromatography. The sodium dodecyl sulfate electrophoresis method was used for determining enzyme purity. The optimum pH, optimum temperature, optimum ionic strength, stable pH, and KM and Vmax values for glutathione and 1-chloro-2,4-dinitrobenzene were obtained for the enzyme as follows: 7.0 in the K-phosphate buffer, 30 °C, 0.125 M, 6.5 in the K-phosphate buffer, 0.344 mM, 0.89 mM, and 0.098 EU/ml, 0.214 EU/ml. Lineweaver-Burk graphs were used to examine the in vitro enzyme activity in order to determine the inhibitory effects of some metal ions such as Cd2+, Ni2+, Cu2+, and Mg2+ and organic compounds such as sodium dodecyl sulfate (SDS), ascorbic acid (vitamin C), benzoic acid, and ethylenediaminetetraacetic acid (EDTA). The IC50 and Ki values for each of the metal ions and organic molecules were calculated. According to the results, Ca2+ metal ion and sodium dodecyl sulfate compounds were found to be the best inhibitor with a Ki value of 0.06 ± 0.04 and 0.20 ± 0.27, respectively.

Keywords

Characterization Cherry laurel fruit Glutathione S-transferase Inhibition Purification 

Notes

Compliance With ethical standards

Conflict of Interest

None.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Funding Statement

None.

References

  1. 1.
    Ayaz, F. A., Reunanen, M., & Kucukıslamoğlu, M. M. (1997). Phenolic acid and fatty acid composition in the fruits of Laurocerasus officinalis Roem. And its cultivars. Journal of Food Composition and Analysis, 10(4), 350–357.CrossRefGoogle Scholar
  2. 2.
    Ivana, T., Sasa, S., Dragan, T., Zoran, B., Todorovıc Nada, C., & Lazic, L. (2014). The effect of different extraction techniques on the composition and antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts. Industrıal Crops And Products, 54, 142–148.CrossRefGoogle Scholar
  3. 3.
    Beyhan, O. (2010). A study on selection of promising native cherry Laurel (Prunus Laurocerasus L.) genotypes from Sakarya, Turkey. Journal of Animal and Plant Sciences, 20(4), 231–233.Google Scholar
  4. 4.
    Kolaylı, S., Kucuk, M., Duran, C., Candan, F., & Dıncer, B. (2003). Chemical and antioxidant properties of Laurocerasus officinalis Roem. (cherry laurel) fruit grown in the Black Sea Region. Journal of Agricultural and Food Chemistry, 51(25), 7489–7494.CrossRefGoogle Scholar
  5. 5.
    Islam, A. (2002). ‘Kiraz’ cherry laurel (Prunus laurocerasus). New Zealand Journal of Crop and Horticultural Science, 30(4), 301–302.CrossRefGoogle Scholar
  6. 6.
    Temiz, H., & Tarakci, Z. (2017). Composition of volatile aromatic compounds and minerals of Tarhana enriched with cherry laurel (Laurocerasus officinalis). Journal of Food Science and Technology, 54(3), 735–742.CrossRefGoogle Scholar
  7. 7.
    Ozturk, B., Celik, S. M., Karakaya, M., Islam, A., & Yarılgac, T. (2015). Storage temperature affects phenolic content, antioxidant activity and fruit quality parameters of cherry laurel (Prunus laurocerasus L.). Journal of Food Processing and Preservation, 41(41).  https://doi.org/10.1111/jfpp.12774.
  8. 8.
    Aydın, A., Erenler, R., Yılmaz, B., & Tekin, S. (2016). Antiproliferative effect of cherry laurel. Journal of the Turkish Chemical Society, 3(3), 217–228.CrossRefGoogle Scholar
  9. 9.
    Yildiz, H., Ercisli, S., Narmanlioglu, H. K., Guclu, S., Akbulut, M., & Turkoglu, Z. (2014). The main quality attributes of non-sprayed cherry laurel (Laurocerasus officinalis Roem.) genotypes. In Genetika, 46(1), 129–136.CrossRefGoogle Scholar
  10. 10.
    Karabegovic, I., Stojicevic, S., Todorovic, S., Zoran, B., Nikolic, C. N., Miodrag, N., Velickovic, L., & Dragan, T. (2014). The effect of different extraction techniques on the composition and antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts. Industrial Crops and Products, 54, 142–148.CrossRefGoogle Scholar
  11. 11.
    Hayes, J. D., Flanagan, J. U., & Jowsey, I. R. (2005). Glutathione transferases. Annual Review of Pharmacology and Toxicology, 45, 51–88.CrossRefGoogle Scholar
  12. 12.
    Erat, M., Sakiroglu, H., & Ciftci, M. (2005). Effects of some antibiotics on glutathione reductase activities from human erythrocytes in vitro and from rat erythrocytes in vivo. Journal of Enzyme Inhibition and Medicinal Chemistry, 20(1), 69–74.CrossRefGoogle Scholar
  13. 13.
    Mazzetti, A. P., Fiorile, M. C., Primavera, A., & Lo Bello, M. (2015). Glutathione transferases and neurodegenerative diseases. Neurochemistry International, 82, 10–18.CrossRefGoogle Scholar
  14. 14.
    Erat, M., & Sakiroglu, H. (2013). The effect of some antineoplastic agents on glutathione S-transferase from human erythrocytes. Journal of Enzyme Inhibition and Medicinal Chemistry, 28(4), 711–716.CrossRefGoogle Scholar
  15. 15.
    Gulcin, I., Scozzafava, A., Supuran, C. T., Akıncıoğlu, H., Koksal, Z., Turkan, F., & Alwasel, S. (2016). The effect of caffeic acid phenethyl ester (CAPE) on metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, glutathione S-transferase, lactoperoxidase, and carbonic anhydrase isoenzymes I, II, IX, and XII. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6), 1095–1101.CrossRefGoogle Scholar
  16. 16.
    Comakli, V., Ciftci, M., & Kufrevioglu, O. I. (2011). Purification of glutathione S-transferase enzyme from rainbow trout erythrocytes and examination of the effects of certain antibiotics on enzyme activity. Hacettepe Journal of Biology and Chemistry, 39(4), 413–419.Google Scholar
  17. 17.
    Turkan, F., Sakiroglu, H., & Balcı, N. (2014). Purification and characterization of the glutaton S-transferase enzyme from the fruit fruit (Laurocerasus officinalis Roem.) and inhibition effects of enzyme activity. Mus Alparslan University Journal of Science, 2(2), 280–288.Google Scholar
  18. 18.
    Gulcin, I., Scozzafava, A., Supuran, C. T., Koksal, Z., Turkan, F., Çetinkaya, S., Bingöl, Z., Huyut, Z., & Alwasel, S. H. (2016). Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase, and carbonic anhydrase isoenzymes. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6), 1698–1702.CrossRefGoogle Scholar
  19. 19.
    Pfaller, M. A., Flamm, R. K., Duncan, L. R., Mendes, R. E., Jones, R. N., & Sader, H. S. (2017). Antimicrobial activity of tigecycline and cefoperazone/sulbactam tested against 18,386 gram-negative organisms from Europe and the Asia-Pacific region. Diagnostic Microbiology and Infectious Disease, 88(2), 177–183.CrossRefGoogle Scholar
  20. 20.
    Turkan, F., Huyut, Z., Demir, Y., Ertaş, F., & Beydemir, S. (2018). The effects of some cephalosporins on acetylcholinesterase and glutathione S-transferase: an in vivo and in vitro study. Archives of Physiology and Biochemistry.  https://doi.org/10.1080/13813455.2018.1452037.
  21. 21.
    Turkan, F., Huyut, Z., Taslimi, P., Huyut, M. T., & Gulcin, İ. (2018). Investigation of the effects of cephalosporin antibiotics on glutathione S-transferase activity in different tissues of rats in vivo conditions in order to drug development research. Drug and Chemical Toxicology.  https://doi.org/10.1080/01480545.2018.1497644.
  22. 22.
    Gumustekin, K., Taysi, S., Alp, H. H., Aktas, O., Oztasan, N., Akcay, F., Suleyman, H., Akar, S., Dane, S., & Gul, M. (2010). Vitamin E and Hippophea rhamnoides L. extract reduce nicotine-induced oxidative stress in rat heart. Cell Biochemistry, and Function, 28(4), 329–333.CrossRefGoogle Scholar
  23. 23.
    Knaust, A., Shevchenko, A., & Shevchenko, A. (2012). Horizontal carryover of proteins on one-dimensional polyacrylamide gels may jeopardize gel-enhanced liquid chromatography-mass spectrometry proteomic interpretations. Analytical Biochemistry, 421, 779–781.CrossRefGoogle Scholar
  24. 24.
    Gürsul C, Ekinci Akdemir, F. N., Akkoyun, T., Can, İ., Gul, M., Gulcin, İ. (2016). Protective effect of Naringin on experimental hindlimb ischemia/reperfusion injury in rats. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(1), 56–61.Google Scholar
  25. 25.
    Aksoy, M., Ozaslan, M. S., & Kufrevioglu, O. I. (2016). Purification of glutathione S-transferase from Van Lake fish (Chalcalburnus atrichia Pallas) muscle and investigation of some metal ions effect on enzyme activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 31, 546–550.CrossRefGoogle Scholar
  26. 26.
    Akıncıoglu, A., Kocaman, E., Akıncıoglu, H., Salmas, R. E., Durdagı, S., Gülçin, İ., Supuran, C. T., & Göksu, S. (2017). The synthesis of novel sulfamides derived from beta-benzylphenethylamines as acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase enzymes inhibitors. Bioorganic Chemistry, 74, 238–250.CrossRefGoogle Scholar
  27. 27.
    Turkan, F., Huyut, Z., & Atalar, M. N. (2018). The toxicological impact of some avermectins on glutathione S-transferase enzyme. Journal of Biochemical and Molecular Toxicology, 32(10), 22205.CrossRefGoogle Scholar
  28. 28.
    Taslimi, P., Sujayev, E., Turkan, F., Garibov, E., Huyut, Z., Farzaliyev, F., Mamedova, S., & Gulçin, İ. (2018). Synthesiz and investigation of the conversion reactions of pyrimidine-thiones with nucleophilic reagent and evaluation of their acetylcholinesterase, carbonic anhydrase inhibitio, and antioxidant activities. Journal of Biochemical and Molecular Toxicology, 32(2), 22019.CrossRefGoogle Scholar
  29. 29.
    Gülçin, İ., Taslimi, P., Aygün, A., Sadeghiana, N., Bastem, E., Küfrevioglu, O. I., Türkan, F., & Sen, F. (2018). Antidiabetic and antiparasitic potentials: inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. International Journal of Biological Macromolecules, 119, 741–746.CrossRefGoogle Scholar
  30. 30.
    Korystov, Y. N., Mosin, V. A., Shaposhnikova, V. V., Levitman, M. K., Kudryavtsev, A. A., Kruglyak, E. B., Sterlina, T. S., Viktorov, A. V., & Drinyaev, V. A. (1999). A comparative study of the effects of aversectin C, abamectin and ivermectin on apoptosis of rat thymocytes induced by radiation and dexamethasone. Acta Veterinary, 68, 23–29.CrossRefGoogle Scholar
  31. 31.
    Li, N., Jiang, H., Li, J., Wang, Z., Li, C., Li, X., & Ding, S. (2009). Pharmacokinetics of doramectin in rabbits after subcutaneous administration. Journal of Veterinary Pharmacology and Therapeutics, 32, 397–399.CrossRefGoogle Scholar
  32. 32.
    McKellar, Q. A., & Benchaoui, H. A. J. (1996). Avermectins and milbemycins. Journal of Veterinary Pharmacology and Therapeutics, 19, 331–351.CrossRefGoogle Scholar
  33. 33.
    de Souza Chagas, A. C., da Silva Vieir a, L., Aragão, W. R., do Carmo Navarro, A. M., & Villela, L. C. V. (2007). Anthelmintic action of eprinomectin in lactating Anglo-Nubian goats in Brazil. Parasitology Research, 100, 391–394.CrossRefGoogle Scholar
  34. 34.
    Setiabudi, H. D., Jusoh, R., Suhaimi, S. F. R. M., & Masrur, S. F. (2016). Adsorption of methylene blue onto oil palm (Elaeis guineensis) leaves: process optimization, isotherm, kinetics and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 63, 363–370.CrossRefGoogle Scholar
  35. 35.
    Camposa Débora, A., Coscuetaa Ezequiel, R., Woitovich Valettib, N., Pastrana-Castroc Lorenzo, M., Teixeirad José, A., Picób Guillermo, A., & Manuela Pintado, M. (2019). Optimization of bromelain isolation from pineapple byproducts by polysaccharide complex formation. Food Hydrocolloids, 87, 792–804.CrossRefGoogle Scholar
  36. 36.
    Almeida Bezerraa, M., Erthal Santelli, R., Padua Oliveiraa, E., Silveira Villar, L., & Amelia Escaleira, L. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965–977.CrossRefGoogle Scholar
  37. 37.
    Sureshkumar Raju, S., Ganesh Kumar, K., Rahimi-Gorji, M., & Khan, I. Darcy-Forchheimer flow and heat transfer augmentation of a viscoelastic fluid over an incessant moving needle in the presence of viscous dissipation. Microsystem Technologies.  https://doi.org/10.1007/s00542-019-04340-3.
  38. 38.
    Ahmed, N., Ali Shah, N., Ahmad, B., Inayat Ali, S., Shah, S., & Ulhaq, M. R.-G. Transient MHD convective flow of fractional nanofluid between vertical plates. Journal of Applied and Computational Mechanics.  https://doi.org/10.22055/JACM.2018.26947.1364.
  39. 39.
    Hussanan, A., Khan, I., Rahimi Gorji, M., & Khan, W. A. CNTS-water–based nanofluid over a stretching sheet. BioNanoScience.  https://doi.org/10.1007/s12668-018-0592-6.
  40. 40.
    Rahimi-Gorji, M., Ghajar, M., & Amir-Hasan Kakaee, D. D. G. (2017). Modeling of the air conditions effects on the power and fuel consumption of the SI engine using neural networks and regression. Journal of the Brazilian Society of Mechanical Sciences and Engineering, (2), 375–384.Google Scholar
  41. 41.
    Taslimi, P., Çağlayan, C., Farzaliyev, V., Nabiyev, O., Sujayev, A., Turkan, F., Kaya, R., & Gulçin, İ. (2018). Synthesis and discovery of potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α- glycosidase enzymes inhibitors: the novel N,N′-bis-cyanomethylamine and alkoxymethylamine derivatives. Journal of Biochemical and Molecular Toxicology, 32(4), 22042.CrossRefGoogle Scholar
  42. 42.
    Turkan, F., Huyut, Z., Taslimi, P., & Gulçin, İ. (2018). The effects of some antibiotics from cephalosporin groups on the acetylcholinesterase and butyrylcholinesterase enzymes activities in different tissues of rats. Archives of Physiology and Biochemistry.  https://doi.org/10.1080/13813455.2018.1427766.
  43. 43.
    Turkan, F., Huyut, Z., Taslimi, P., & Gulçin, İ. (2018). The in vivo effects of cefazolin, cefuroxime, and cefoperazon on the carbonic anhydrase in different rat tissues. Journal of Biochemical and Molecular Toxicology, 32(3), 22041.CrossRefGoogle Scholar
  44. 44.
    Aslan, H. E., Demir, Y., Özaslan, M. S., Türkan, F., Beydemir, S., & Küfrevioğlu, O. I. (2018). The behavior of some chalcones on acetylcholinesterase and carbonic anhydrase activity. Drug and Chemical Toxicology.  https://doi.org/10.1080/01480545.2018.1463242.
  45. 45.
    Taslimi, P., Osmanova, S., Çağlayan, C., Turkan, F., Sardarova, S., Farzaliyev, V., Sujayev, A., Sadeghian, N., & Gulçin, İ. (2018). Novel amides of 1,1-bis-(carboxymethylthio)-1-arylethanes: synthesis, characterization, and acetylcholinesterase, butyrylcholinesterase, and carbonic anhydrase inhibitory properties. Journal of Biochemical and Molecular Toxicology, 32(9), 22191.CrossRefGoogle Scholar
  46. 46.
    Gondolova, G., Taslimi, P., Medjidov, A., Farzaliyev, V., Sujayev, A., Mansura, H., Sahin, O., Yalçın, B., Turkan, F., & Gulçin, I. (2018). Synthesis, crystal structure and biological evaluation of spectroscopic characterization of Ni(II) and co(II) complexes with N-salicyloil-N’-maleoil- hydrazine as anticholinergic and antidiabetic agents. Journal of Biochemical and Molecular Toxicology, 32(9), 22197.CrossRefGoogle Scholar
  47. 47.
    Türkan, F., Çetin, A., Taslimi, P., & Gulçin, I. (2018). Some pyrazoles derivatives: potent carbonic anhydrase, α-glycosidase and cholinesterase enzymes inhibitors. Archiv der Pharmazie, 351(10), 1800200.CrossRefGoogle Scholar
  48. 48.
    Cetin, A., Türkan, F., Taslimi, P., & Gülçin, İ. (2019). Synthesis and characterization of novel substituted thiophene derivatives and discovery of their carbonic anhydrase and acetylcholinesterase inhibition effects. Journal of Biochemical and Molecular Toxicology, 33(3), 22261.Google Scholar
  49. 49.
    Turkan, F., Çetin, A., Taslimi, P., Karaman, M., & Gulçin, I. (2019). Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorganic Chemistry, 86, 420–427.CrossRefGoogle Scholar
  50. 50.
    Turkan, F., & Atalar, M. N. (2018). The effects of amoxicillin and vancomycin hydrochloride hydrateon glutathione S-transferase enzyme activity: an in vitro study. Iğdır University Journal of the Institute of Science and Technology, 8(2), 141–148.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Health Services Vocational SchoolIgdir UniversityIgdirTurkey
  2. 2.Sen Research Group, Department of Biochemistry, Faculty of Science and LiteratureUniversity of DumlupinarKutahyaTurkey
  3. 3.Department of Chemıstry, Faculty of ScienceAğrı Ibrahim Cecen UniversityAğrıTurkey

Personalised recommendations