Advertisement

BioNanoScience

, Volume 9, Issue 3, pp 749–757 | Cite as

The Kinetic Parameters of Adsorption of Enzymes Using Carbon-Based Materials Obtained from Different Food Wastes

  • Özkan Demirbaş
  • Mehmet Harbi Çalımlı
  • Buse Demirkan
  • Mehmet Hakkı Alma
  • Mehmet Salih NasEmail author
  • Anish KhanEmail author
  • Abdullah M. AsiriEmail author
  • Fatih ŞenEmail author
Article
  • 38 Downloads

Abstract

In this study, adsorption of catalase enzyme onto activated carbon obtained from apple shell, kinetic parameters, and activation data of adsorption process was investigated. Temperature (15, 25, 36.5, and 45 °C), solution pH (5.5, 7, and 9), initial catalase enzyme concentration (1.10−1, 2.10−1, and 2.5.10−1 g l−1), and ionic strength (1.10−2, 5.10−2, and 7.5.10−2 M) have taken as kinetic parameters for the adsorption of catalase enzyme on activated carbon. In all runs, common parameters of temperature, pH, initial enzyme concentration, and ionic strength were taken as 298 K, pH 7, 0.2 g l−1, and 5.10−2 M, respectively. The results of experiments revealed that the adsorption of catalase enzyme onto activated carbon increased with increasing temperature (15–45 °C), ionic strength, and initial catalase enzyme concentration. However, the adsorption process of catalase on activated carbon was affected negatively by increased pH. The thermodynamic functions such as enthalpy (ΔH), activation energy (Ea), entropy (ΔS), and Gibbs energy (ΔG) were investigated. ΔG, Ea, ΔH, and ΔS were found to be − 70.61, 4.19, − 1.69 kJ mol−1, and 231 J mol−1 K−1 for catalase enzyme adsorption, respectively. The adsorption of the process was investigated using Eyring and Arrhenius equations, and the findings showed that the adsorption kinetic is coherent with the pseudo-second-order model. Eventually, activated carbon can be used as an effective adsorbent for the adsorption of catalase.

Keywords

Catalase enzyme Adsorption Activated carbon Kinetic parameters 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed Consent

None.

Funding Statement

None.

Supplementary material

12668_2019_635_MOESM1_ESM.docx (219 kb)
ESM 1 (DOCX 218 kb)
12668_2019_635_MOESM2_ESM.docx (20 kb)
ESM 2 (DOCX 19 kb)

References

  1. 1.
    Sen, F., Karataş, Y., Gülcan, M., & Zahmakıran, M. (2014). Amylamine stabilized platinum (0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane. RSC Advances, 4(4), 1526–1531.CrossRefGoogle Scholar
  2. 2.
    Akocak, S., Şen, B., Lolak, N., Şavk, A., Koca, M., Kuzu, S., & Şen, F. (2017). One-pot three-component synthesis of 2-amino-4H-chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as a highly efficient and recyclable catalyst. Nano-Structures & Nano-Objects, 11, 25–31.CrossRefGoogle Scholar
  3. 3.
    Pamuk, H., Aday, B., Kaya, M., & Sen, F. (2015). Pt Nps@GO as highly efficient and reusable catalyst for one-pot synthesis of acridinedione derivatives. RSC Advances, 5, 49295–49300.CrossRefGoogle Scholar
  4. 4.
    Sen, B., Kuzu, S., Demir, E., Okyay, T. O., & Sen, F. (2017). Hydrogen liberation from the dehydrocoupling of dimethylamine-borane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide. International Journal of Hydrogen Energy, 42(36), 23299–23306.CrossRefGoogle Scholar
  5. 5.
    Demir, E., Savk, A., Sen, B., & Sen, F. (2017). A novel monodisperse metal nanoparticles anchored graphene oxide as counter electrode for dye-sensitized solar cells. Nano-Structures & Nano-Objects, 12, 41–45.CrossRefGoogle Scholar
  6. 6.
    Sahin, B., Aygun, A., Gunduz, H., Sahin, K., Demir, E., Akocak, S., & Sen, F. (2018). Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids and Surfaces B: Biointerfaces, 163, 119–124.CrossRefGoogle Scholar
  7. 7.
    Demirci, T., Celik, B., Yıldız, Y., Eriş, S., Arslan, M., Kilbas, B., & Sen, F. (2016). One-pot synthesis of Hantzsch dihydropyridines using highly efficient and stable PdRuNi@GO catalyst. RSC Advances, 6, 76948–76956.CrossRefGoogle Scholar
  8. 8.
    Celik, B., Baskaya, G., Karatepe, O., Erken, E., & Sen, F. (2016). Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB. International Journal of Hydrogen Energy, 41, 5661–5669.CrossRefGoogle Scholar
  9. 9.
    Abrahamson, J. T., Sen, F., Sempere, B., & Wal, M. P. (2013). Excess thermopower and the theory of thermopower waves. ACS Nano, 7(8), 6533–6544.CrossRefGoogle Scholar
  10. 10.
    Bozkurt, S., Tosun, B., Sen, B., Akocak, S., Savk, A., Ebeoğlugil, M. F., & Sen, F. (2017). A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles. Analytica Chimica Acta, 989C, 88–94.CrossRefGoogle Scholar
  11. 11.
    Ayranci, R., Baskaya, G., Guzel, M., Bozkurt, S., Ak, M., Savk, A., & Sen, F. (2017). Carbon-based nanomaterials for high-performance optoelectrochemical systems. Chemistry Select., 2(4), 1548–1555.Google Scholar
  12. 12.
    Dasdelen, Z., Yıldız, Y., Eris, S., & Sen, F. (2017). Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybride material for methanol oxidation reaction. Applied Catalysis B: Environmental, 219C, 511–516.CrossRefGoogle Scholar
  13. 13.
    Karatepe, O., Yildiz, Y., Pamuk, H., Eris, S., Dasdelen, Z., & Sen, F. (2016). Enhanced electrocatalytic activity and durability of highly monodisperse Pt@PPy-PANI nanocomposites as a novel catalyst for electro-oxidation of methanol. RSC Advances, 6, 50851–50857.CrossRefGoogle Scholar
  14. 14.
    Baskaya, G., Esirden, I., Erken, E., Kaya, M., & Sen, F. (2017). Synthesis of 5-substituted-1H-tetrazole derivatives using monodisperse carbon black decorated Pt nanoparticles as heterogeneous nanocatalysts. Journal of Nanoscience and Nanotechnology, 17, 1992–1999.CrossRefGoogle Scholar
  15. 15.
    Erkan, A., Bakir, U., & Karakas, G. (2006). Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. Journal of Photochemistry and Photobiology A: Chemistry, 184, 313–321.CrossRefGoogle Scholar
  16. 16.
    Preety, V. H. (2014). Immobilization and kinetics of catalase on calcium carbonate nanoparticles attached epoxy support. Applied Biochemistry and Biotechnology, 172, 115–130.CrossRefGoogle Scholar
  17. 17.
    Gianfreda, L., & Scarfi, M. R. (1991). Enzyme stabilization: state of the art. Molecular and Cellular Biochemistry, 100(2), 97–128.CrossRefGoogle Scholar
  18. 18.
    Dogac, Y. I., Cinar, M., & Teke, M. (2015). Improving catalase stability properties by encapsulation in alginate=Fe3O4 magnetic composite beads for enzymatic removal of H2O2. Preparative Biochemistry & Biotechnology, 45, 144–157.CrossRefGoogle Scholar
  19. 19.
    Gao, X., Yang, W., Pang, P., LiaoCai, S. Q., Zeng, K., & Grimes, C. A. (2007). A wireless magneto elastic biosensor for rapid detection of glucose concentrations in urine samples. Sensors and Actuators B: Chemical, 128, 161–167.CrossRefGoogle Scholar
  20. 20.
    Amorim, A. M., Gasques, M. D. G., Jurgen, A. J., & Scharf, M. (2002). The application of catalase for the elimination of hydrogen peroxide residues after bleaching of cotton fabrics. Anais da Academia Brasileira de Ciências, 74, 433–436.CrossRefGoogle Scholar
  21. 21.
    Tatsuma, T., Watanabe, T., Tatsuma, S., & Watanabe, T. (1994). Substrate-purging enzyme electrodes, peroxidase/catalase electrodes for hydrogen peroxide with an improved upper sensing limit. Analytical Chemistry, 66(2), 290–294.CrossRefGoogle Scholar
  22. 22.
    Madaras, M. B., Spokane, R. B., Johnson, J. M., & Woodward, J. R. (1997). Glutamine biosensors for biotechnology applications, with suppression of the endogenous glutamate signal. Analytical Chemistry, 69(18), 3674–3678.CrossRefGoogle Scholar
  23. 23.
    Santoni, T., Santianni, D., Manzoni, A., Zanardi, S., & Mascini, M. (1997). Enzyme electrode for glucose determination in whole blood. Talanta, 44(9), 1573–1580.CrossRefGoogle Scholar
  24. 24.
    Hnaien, M., Lagarde, F., & Jaffrezic-Renault, N. (2010). A rapid and sensitive alcohol oxidase/catalase conductometric biosensor for alcohol determination. Talanta, 81(1–2), 222–227.CrossRefGoogle Scholar
  25. 25.
    Felhofer, J. L., Caranto, J. D., & Garcia, C. D. (2010). Adsorption kinetics of catalase to thin films of carbon nanotubes. Langmuir, 26(22), 17178–17183.CrossRefGoogle Scholar
  26. 26.
    Alptekin, O., Tukel, S. S., Yıldırım, D., & Alagöz, D. (2010). Immobilization of catalase onto Eupergit C and its characterization. Journal of Molecular Catalysis B: Enzymatic, 64(3–4), 177–183.CrossRefGoogle Scholar
  27. 27.
    Yang, J. J., Ma, X. O., Zhang, Z. S., Cheng, B., Li, S., & Wang, G. (2010). Lipase immobilized by modificationcoupled and adsorption-cross-linking methods: a comparative study. Biotechnology Advances, 28, 644–650.CrossRefGoogle Scholar
  28. 28.
    Reguly, J. C. (2000). Biotechnology of fermentative process (Portuguese) (Vol. 3). Pelotas, Brasil: Editora Universitário/UFPel ISBN: 85-7192-128-8.Google Scholar
  29. 29.
    Burns, R. G. (1986). Interaction of enzymes with soil mineral and organic colloids. Madison: Soil Science Society of America.Google Scholar
  30. 30.
    Kise, H., & Hayakawa, A. (1991). Immobilization of proteases to porous chitosan beads and their catalysis for ester and peptide synthesis in organic solvents. Enzyme and Microbial Technology, 13, 584–588.CrossRefGoogle Scholar
  31. 31.
    Huang, X. L. (1997). Comparıson of the propertıes of trypsın immobilized on 2 celite(TM) derıvatıves, Catignani H.L, and Swaisgood H.E. Journal of Biotechnology, 53, 21.CrossRefGoogle Scholar
  32. 32.
    Gooding, J. J., & Hal, E. A. H. (1996). Membrane properties of acrylate bulk polymers for. Biosensor applications. Biosensors & Bioelectronics, 11, 1031.CrossRefGoogle Scholar
  33. 33.
    Yıldız, A., & GÜR, A. (2007). Adsorption of phenol and chlorophenols on pure and modified sepiolite. Journal of the Serbian Chemical Society, 72, 467.CrossRefGoogle Scholar
  34. 34.
    Yıldız, A., GÜR, A., & Ceylan, H. (2006). Adsorption of aniline, phenol, and chlorophenols on pure and modified bentonite. The Russıan Journal of Physıcal Chemıstry, 80, S172–S176.Google Scholar
  35. 35.
    Yıldız, A., & GÜR, A. (2006). Adsorption of phenol and phenol derivatives on pure and modified kaolinite. Asian Journal of Chemistry, 18, 2650.Google Scholar
  36. 36.
    Baileey, J. E., & Ollis, D. F. (1986). Applied enzyme catalysis (p. 180). Singapore: Mc Graw-Hill International.Google Scholar
  37. 37.
    Kennedy, J. F., & Melo, E. H. M. (1990). Immobilized enzymes and cells. Chemical Engineering Progress, 86, 81.Google Scholar
  38. 38.
    Bjorlıng, F., Godtfredsen, S. E., & Kırk, O. (1991). The future impact of industrial lipases. Trends in Biotechnology, 9, 360–363.CrossRefGoogle Scholar
  39. 39.
    Demirbas, Ö., Calimli, M. H., Kuyuldar, E., Alma, M. H., Nas, M. S., & Sen, F. Equilibrium, kinetics, and thermodynamic of adsorption of enzymes on diatomite clay materials. BioNanoscience.  https://doi.org/10.1007/s12668-019-00615-1.
  40. 40.
    Çalımlı, M. H., Demirbaş, Ö., Aygün, A., Alma, M. H., Nas, M. S., & Şen, F. (2018). Immobilization kinetics and mechanism of bovine serum albumin on diatomite clay from aqueous solutions. Applied Water Science, 8, 209.CrossRefGoogle Scholar
  41. 41.
    Akkuş, P., (2006). “Lipaz Kullanılarak Şeker Esteri Sentezi”, G.Y.T.E. Mühendislik ve Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Gebze.Google Scholar
  42. 42.
    Hunter, J. (1999). Introduction to modern colloid science. New York, USA: Oxford University Press.Google Scholar
  43. 43.
    Doğan, M., Alkan, M., Demirbaş, O., Özdemir, Y., & Özmetin, C. (2006). Adsorption kinetics of Maxilon blue GRL onto sepiolite from aqueous solutions. Chemical Engineering Journal, 124, 89–101.CrossRefGoogle Scholar
  44. 44.
    Demirbaş, O., (2006). Doctorate Thesis, Balikesir University Institute of Science, Balıkesir.Google Scholar
  45. 45.
    Tekin, N., Demirbaş, O., & Alkan, M. (2005). Adsorption of cationic polyacrylamide onto kaolinite. Microporous and Mesoporous Materials, 85, 340–350.CrossRefGoogle Scholar
  46. 46.
    Vermöhlen, K., Lewandowski, H.-D., Narres, H. D., & Schwuger, M. J. (2000). Adsorption of polyelectrolytes onto oxides—the influence of ionic strength, molar mass, and Ca2+ ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 163, 45–53.CrossRefGoogle Scholar
  47. 47.
    Vecchia, R. D., Sebrao, D., Nascımento, M. G., & Soldı, V. (2005). Carboxymethylcellulose and poly(vinyl alcohol) used as film support for lipases immobilization. Process Biochemistry, 40, 2677–2682.CrossRefGoogle Scholar
  48. 48.
    Pronk, W., Kerkhof, P. J. A. M., Van Helden, C., & van Rıet, K. (1988). The hydrolysis of triglycerides by immobilized lipase in a hydrophilic membrane reactor. Biotechnology and Bioengineering, 32, 512–518.CrossRefGoogle Scholar
  49. 49.
    Xu, H., Li, M., & He, B. (1995). Immobilization of Candida cylindracea lipase on methyl acrylate-divinyl benzene copolymer and its derivatives. Enzyme and Microbial Technology, 17, 194–199.CrossRefGoogle Scholar
  50. 50.
    Montero, S., Blanco, A., Virto, M., Ladenta, L. C., Agud, I., Solozabal, R., Lascaray, J. M., Renobales, M., Llama, M. J., & Serra, J. L. (1993). Immobilization of Candida rugosa lipase and some properties of the immobilized enzyme. Enzyme and Microbial Technology, 15, 239–247.CrossRefGoogle Scholar
  51. 51.
    Guo, Y., & Bustin, R. M. (1998). FTIR spectroscopy and reflectance of modern charcoals and decayed fungal woods: Implications for studies of intertinite in coals. International Journal of Coal Geology, 37, 29–53.CrossRefGoogle Scholar
  52. 52.
    Figueiredo, J. L., Pereira, M. F. R., Freitas, M. M. A., & Crfao, J. J. M. (1999). Modification of surface chemistry of activated carbons. Carbon, 37, 1379–1389.CrossRefGoogle Scholar
  53. 53.
    Lu, C. F., Nadarajah, A., & Chittur, K. K. (1994). A comprehensive model for protein adsorption to surfaces. Journal of Colloid and Interface Science, 168, 152–161.CrossRefGoogle Scholar
  54. 54.
    Giacomelli, C. E., Bremer, M. G., & Norde, W. J. (1999). ATR-FTIR study of IgG adsorbed on different silica surfaces. Journal of Colloid and Interface Science, 220, 13–23.CrossRefGoogle Scholar
  55. 55.
    Ai, Q., Yang, D., Li, Y., Shi, J., Wang, X., & Jiang, Z. (2014). Highly efficient covalent immobilization of catalase on titanate nanotubes. Biochemical Engineering Journal, 83, 8–15.CrossRefGoogle Scholar
  56. 56.
    Rahimi-Gorji, M., Gorji, T. B., & Gorji-Bandpy, M. (2016). Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two-phase flow simulation. Computers in Biology and Medicine, 74, 1–17.CrossRefGoogle Scholar
  57. 57.
    Rahimi-Gorji, M., Pourmehran, O., Gorji-Bandpy, M., & Gorji, T. B. (2015). CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways. Journal of Molecular Liquids, 209, 121–133.CrossRefGoogle Scholar
  58. 58.
    Hussanan, A., Khan, I., Gorji, M. R., & Khan, W. A. (2019). CNTS-water-based nanofluid over a stretching sheet. BioNanoScience.  https://doi.org/10.1007/s12668-018-0592-6.
  59. 59.
    Sureshkumar Raju, S., Ganesh Kumar, K., Rahimi-Gorji, M., & Khan, I. Darcy–Forchheimer flow and heat transfer augmentation of a viscoelastic fluid over an incessant moving needle in the presence of viscous dissipation. Microsystem Technologies.  https://doi.org/10.1007/s00542-019-04340-3.
  60. 60.
    Ahmed, N., Shah, N. A., Ahmad, B., Shah, S. I. A., Ulhaq, S., & Rahimi-Gorji, M. Transient MHD convective flow of fractional nanofluid between vertical plates. Journal of Applied and Computational Mechanics.  https://doi.org/10.22055/JACM.2018.26947.1364.
  61. 61.
    Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.CrossRefGoogle Scholar
  62. 62.
    Doğan, M., & Alkan, M. (2003). Adsorption kinetics of methyl violet onto perlite. Chemosphere, 50, 517–528.CrossRefGoogle Scholar
  63. 63.
    Mall, I. D., & Upadhyay, S. N. (1995). Treatment of methyl violet bearing wastewater from paper mill effluent using low-cost adsorbents. Journal of Indian Pulp and Paper Technical Association, 7(1), 51–57.Google Scholar
  64. 64.
    Kannan, N., & Sundaram, M. (2001). Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes and Pigments, 51, 5–40.CrossRefGoogle Scholar
  65. 65.
    Laidler, K. J., & Meiser, J. M. (1999). Physical chemistry (p. 852). New York, NY: Houghton Mifflin.Google Scholar
  66. 66.
    Singh, D. (2000). Studies of the adsorption thermodynamics of oxamyl on fly ash. Adsorption Science and Technology, 18(8), 741–748.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Deparment of Chemistry, Faculty of ScienceBalikesir UniversityBalikesirTurkey
  2. 2.Sen Research Group, Department of Biochemistry, Faculty of Science and LiteratureUniversity of DumlupinarKutahyaTurkey
  3. 3.Tuzluca Vocational SchoolIgdir UniversityIgdirTurkey
  4. 4.Department of Environmental Engineering, Faculty of EngineeringIgdir UniversityIgdirTurkey
  5. 5.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  6. 6.Center of Excellence for Advanced Materials ResearchKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations