Advertisement

BioNanoScience

, Volume 9, Issue 3, pp 692–701 | Cite as

Equilibrium, Kinetics and Thermodynamics of Bovine Serum Albumin from Carbon Based Materials Obtained from Food Wastes

  • Mehmet Harbi Çalımlı
  • Özkan Demirbaş
  • Ayşenur Aygün
  • Mehmet Hakkı Alma
  • Mehmet Salih NasEmail author
  • Anish KhanEmail author
  • Abdullah M. AsiriEmail author
  • Fatih ŞenEmail author
Article
  • 53 Downloads

Abstract

In this research, the adsorption of bovine serum albümin (BSA) onto activated carbon (AC) obtained from apple bark was carried out and the thermodynamic parameters of adsorption process were investigated. Besides, the functions involved in BSA attachment were examined by adsorption experiments on retention capacities for BSA at 298 K, pH of 7, ionic strength of 5.10−2 M, and initial concentration of 5.10−2 g L−1, respectively. The bovine serum albumin (BSA) adsorption experiment onto activated carbon (AC) indicated that the highest adsorption yield was achieved at pH 5.5. The BSA molecules at pH 5.5 are very stable and that pH value is close to isoelectronic point of BSA. The surface structural change of BSA and activated carbon was studied before and after the experiment using scanning electron microscopy (SEM) analysis and Fourier Transform Infrared Spectroscopy (FTIR). By the way, the thermodynamic functions such as Gibbs free energy (ΔG), activation energy (Ea), activation entalphy (ΔH), and activation entropy (ΔS) were calculated as − 66.17, 37.73, − 29.09 kJ mol−1, and + 124.42 J mol−1 K−1 for bovine serum albumin (BSA) adsorption, respectively. The adsorption of the process was investigated using Eyring and Arrhenius equations and the adsorption kinetic of BSA on AC was found to be coherent with the pseudo-second-order model.

Graphical Abstract

Keywords

Bovine serum Albümin Activated carbon Adsorption Kinetic parameters Measoporous material 

Notes

Supplementary material

12668_2019_633_MOESM1_ESM.docx (750 kb)
ESM 1 (DOCX 749 kb)

References

  1. 1.
    Yıldız, Y., Pamuk, H., Karatepe, Ö., Dasdelen, Z., & Sen, F. (2016). Carbon black hybrid material furnished monodisperse platinum nanoparticles as highly efficient and reusable Electrocatalysts for formic acid electro-oxidation. RSC Advances, 6, 32858–32862.  https://doi.org/10.1039/C6RA00232C.CrossRefGoogle Scholar
  2. 2.
    Boghossian, A. A., Sen, F., Gibbons, B. M., Sen, S., Faltermeier, S. M., Giraldo, J. P., Zhang, C. T., Zhang, J., Heller, D. A., & Strano, M. S. (2013). Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Advanced Energy Materials, 3, 881–893.  https://doi.org/10.1002/aenm.201201014.CrossRefGoogle Scholar
  3. 3.
    Abrahamson, J. T., Sempere, B., Walsh, M. P., Forman, J. M., Şen, F., Şen, S., Mahajan, S. G., Paulus, G. L. C., Wang, Q. H., Choi, W., & Strano, M. S. (2013). Excess thermopower and the theory of thermopower waves. ACS Nano, 7, 6533–6544.  https://doi.org/10.1021/nn402411k.CrossRefGoogle Scholar
  4. 4.
    Çelik, B., Başkaya, G., Sert, H., Karatepe, Ö., Erken, E., & Şen, F. (2016). Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB. International Journal of Hydrogen Energy, 41, 5661–5669.  https://doi.org/10.1016/J.IJHYDENE.2016.02.061.CrossRefGoogle Scholar
  5. 5.
    Ayranci, R., Başkaya, G., Güzel, M., Bozkurt, S., Şen, F., & Ak, M. (2017). Carbon based nanomaterials for high performance optoelectrochemical systems. ChemistrySelect, 2, 1548–1555.  https://doi.org/10.1002/slct.201601632.CrossRefGoogle Scholar
  6. 6.
    Şen, F., Demirbaş, Ö., Çalımlı, M. H., et al. (2018). The dye removal from aqueous solution using polymer composite films. Appl Water Sci, 8, 206.  https://doi.org/10.1007/s13201-018-0856-x. Google Scholar
  7. 7.
    Şahin, B., Aygün, A., Gündüz, H., Şahin, K., Demir, E., Akocak, S., & Şen, F. (2018). Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surfaces B Biointerfaces, 163, 119–124.  https://doi.org/10.1016/j.colsurfb.2017.12.042.CrossRefGoogle Scholar
  8. 8.
    Giraldo, J. P., Landry, M. P., Faltermeier, S. M., McNicholas, T. P., Iverson, N. M., Boghossian, A. A., Reuel, N. F., Hilmer, A. J., Sen, F., Brew, J. A., & Strano, M. S. (2014). Erratum: corrigendum: plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials, 13, 530–530.  https://doi.org/10.1038/nmat3947.CrossRefGoogle Scholar
  9. 9.
    Demirbas, O., Calimli, M.H., Kuyuldar, E. et al (2019) Equilibrium, kinetics, and thermodynamic of adsorption of enzymes on diatomite clay materials. BioNanoSci. 2191–1630.  https://doi.org/10.1007/s12668-019-00615-1.
  10. 10.
    Şahin, B., Demir, E., Aygün, A., Gündüz, H., & Şen, F. (2017). Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line. Journal of Biotechnology, 260, 79–83.  https://doi.org/10.1016/j.jbiotec.2017.09.012.CrossRefGoogle Scholar
  11. 11.
    Goksu, H., Yıldız, Y., Çelik, B., Yazici, M., Kilbas, B., & Sen, F. (2016). Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of a reduced graphene oxide furnished platinum nanocatalyst. Catalysis Science & Technology, 6, 2318–2324.  https://doi.org/10.1039/C5CY01462J.CrossRefGoogle Scholar
  12. 12.
    Çalımlı, M. H., Demirbaş, Ö., Aygün, A., et al. (2018). Immobilization kinetics and mechanism of bovine serum albumin on diatomite clay from aqueous solutions. Applied Water Science, 8, 209.  https://doi.org/10.1007/s13201-018-0858-8.CrossRefGoogle Scholar
  13. 13.
    Aday, B., Pamuk, H., Kaya, M., & Sen, F. (2016). Graphene oxide as highly effective and readily recyclable catalyst using for the one-pot synthesis of 1,8-Dioxoacridine derivatives. Journal of Nanoscience and Nanotechnology, 16, 6498–6504.  https://doi.org/10.1166/jnn.2016.12432.CrossRefGoogle Scholar
  14. 14.
    Demirbaş Ö., Çalımlı M.H., Kuyuldar E., Halil Baydilek İ., Nas M.S., Şen F (2019) Thermodynamic kinetics and sorption of bovine serum albumin with different clay materials. In: Inamuddin (eds) Applications of Ion Exchange Materials in Biomedical Industries. Springer, Cham. 978–3–030-06081-7.  https://doi.org/10.1007/978-3-030-06082-4_6
  15. 15.
    Bozkurt, S., Tosun, B., Sen, B., Akocak, S., Savk, A., Ebeoğlugil, M. F., & Sen, F. (2017). A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles. Analytica Chimica Acta, 989, 88–94.  https://doi.org/10.1016/j.aca.2017.07.051.CrossRefGoogle Scholar
  16. 16.
    Bujdák, J., & Rode, B. M. (1997). Silica, alumina, and clay-catalyzed alanine peptide bond formation. Journal of Molecular Evolution, 45, 457–466.  https://doi.org/10.1007/PL00006250.CrossRefGoogle Scholar
  17. 17.
    Bujdák, J., Le Son, H., & Rode, B. M. (1996). Montmorillonite catalyzed peptide bond formation: the effect of exchangeable cations. Journal of Inorganic Biochemistry, 63, 119–124.  https://doi.org/10.1016/0162-0134(95)00186-7.CrossRefGoogle Scholar
  18. 18.
    Causserand, C., Jover, K., Aimar, P., & Meireles, M. (1997). Modification of clay cake permeability by adsorption of protein. J Memb Sci, 137, 31–44.  https://doi.org/10.1016/S0376-7388(97)00181-6.CrossRefGoogle Scholar
  19. 19.
    Ding, X., & Henrichs, S. M. (2002). Adsorption and desorption of proteins and polyamino acids by clay minerals and marine sediments. Marine Chemistry, 77, 225–237.  https://doi.org/10.1016/S0304-4203(01)00085-8.CrossRefGoogle Scholar
  20. 20.
    Fusi, P., Ristori, G. G., Calamai, L., & Stotzky, G. (1989). Adsorption and binding of protein on “clean” (homoionic) and “dirty” (coated with Fe oxyhydroxides) montmorillonite, illite and kaolinite. Soil Biology and Biochemistry, 21, 911–920.  https://doi.org/10.1016/0038-0717(89)90080-1.CrossRefGoogle Scholar
  21. 21.
    Gupta, A., Loew, G. H., & Lawless, J. (1983). Interaction of metal ions and amino acids: possible mechanisms for the adsorption of amino acids on homoionic smectite clays. Inorganic Chemistry, 22, 111–120.  https://doi.org/10.1021/ic00143a025.CrossRefGoogle Scholar
  22. 22.
    Quiquampoix, H., Staunton, S., Baron, M.-H., & Ratcliffe, R. G. (1993). Interpretation of the pH dependence of protein adsorption on clay mineral surfaces and its relevance to the understanding of extracellular enzyme activity in soil. Colloids Surfaces A Physicochem Eng Asp, 75, 85–93.  https://doi.org/10.1016/0927-7757(93)80419-F.CrossRefGoogle Scholar
  23. 23.
    Rigou, P., Rezaei, H., Grosclaude, J., Staunton, S., & Quiquampoix, H. (2006). Fate of prions in soil: adsorption and extraction by electroelution of recombinant ovine prion protein from montmorillonite and natural soils. Environmental Science & Technology, 40, 1497–1503.  https://doi.org/10.1021/es0516965.CrossRefGoogle Scholar
  24. 24.
    Violante, A. (1995). Physicochemical properties of protein-Smectite and protein-Al(OH)x-Smectite complexes. Clay Minerals, 30, 325–336.  https://doi.org/10.1180/claymin.1995.030.4.06.CrossRefGoogle Scholar
  25. 25.
    McClellan, S. J., & Franses, E. I. (2003). Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin. Colloids Surfaces B Biointerfaces, 28, 63–75.  https://doi.org/10.1016/S0927-7765(02)00131-5.CrossRefGoogle Scholar
  26. 26.
    Brandes, N., Welzel, P. B., Werner, C., & Kroh, L. W. (2006). Adsorption-induced conformational changes of proteins onto ceramic particles: differential scanning calorimetry and FTIR analysis. Journal of Colloid and Interface Science, 299, 56–69.  https://doi.org/10.1016/j.jcis.2006.01.065.CrossRefGoogle Scholar
  27. 27.
    Huang, B. X., Kim, H.-Y., & Dass, C. (2004). Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry. Journal of the American Society for Mass Spectrometry, 15, 1237–1247.  https://doi.org/10.1016/j.jasms.2004.05.004.CrossRefGoogle Scholar
  28. 28.
    Kudelski, A. (2003). Influence of electrostatically bound proteins on the structure of linkage monolayers: adsorption of bovine serum albumin on silver and gold substrates coated with monolayers of 2-mercaptoethanesulphonate. Vibrational Spectroscopy, 33, 197–204.  https://doi.org/10.1016/j.vibspec.2003.09.003.CrossRefGoogle Scholar
  29. 29.
    Hu, T., & Su, Z. (2003). A solid phase adsorption method for preparation of bovine serum albumin–bovine hemoglobin conjugate. Journal of Biotechnology, 100, 267–275.  https://doi.org/10.1016/S0168-1656(02)00246-8.CrossRefGoogle Scholar
  30. 30.
    Hook, F., Rodahl, M., Kasemo, B., & Brzezinski, P. (1998). Structural changes in hemoglobin during adsorption to solid surfaces: effects of pH, ionic strength, and ligand binding. Proceedings of the National Academy of Sciences, 95, 12271–12276.  https://doi.org/10.1073/pnas.95.21.12271.CrossRefGoogle Scholar
  31. 31.
    Oliva, F. Y., Avalle, L. B., Cámara, O. R., & De Pauli, C. P. (2003). Adsorption of human serum albumin (HSA) onto colloidal TiO2 particles, part I. Journal of Colloid and Interface Science, 261, 299–311.  https://doi.org/10.1016/S0021-9797(03)00029-8.CrossRefGoogle Scholar
  32. 32.
    Sternik, D., Staszczuk, P., Grodzicka, G., Pękalska, J., & Skrzypiec, K. (2004). Studies of physicochemical properties of the surfaces with the chemically bonded phase of BSA. Journal of Thermal Analysis and Calorimetry, 77, 171–182.  https://doi.org/10.1023/B:JTAN.0000033201.86803.fa.CrossRefGoogle Scholar
  33. 33.
    Vroman, L., & Adams, A. L. (1969). Findings with the recording ellipsometer suggesting rapid exchange of specific plasma proteins at liquid/solid interfaces. Surface Science, 16, 438–446.  https://doi.org/10.1016/0039-6028(69)90037-5.CrossRefGoogle Scholar
  34. 34.
    Aygün, A., Yenisoy-Karakaş, S., & Duman, I. (2003). Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and Mesoporous Materials, 66, 189–195.  https://doi.org/10.1016/j.micromeso.2003.08.028.CrossRefGoogle Scholar
  35. 35.
    Rajeshwarisivaraj, S. S., Senthilkumar, P., & Subburam, V. (2001). Carbon from cassava peel, an agricultural waste, as an adsorbent in the removal of dyes and metal ions from aqueous solution. Bioresource Technology, 80, 233–235.  https://doi.org/10.1016/S0960-8524(00)00179-6.CrossRefGoogle Scholar
  36. 36.
    El-Sheikh, A. H., Newman, A. P., Al-Daffaee, H. K., Phull, S., & Cresswell, N. (2004). Characterization of activated carbon prepared from a single cultivar of Jordanian olive stones by chemical and physicochemical techniques. Journal of Analytical and Applied Pyrolysis, 71, 151–164.  https://doi.org/10.1016/S0165-2370(03)00061-5.CrossRefGoogle Scholar
  37. 37.
    Wu, F. (1999). Pore structure and adsorption performance of the activated carbons prepared from plum kernels. Journal of Hazardous Materials, 69, 287–302.  https://doi.org/10.1016/S0304-3894(99)00116-8.CrossRefGoogle Scholar
  38. 38.
    Tsai, W., Chang, C., Lin, M., Chien, S., Sun, H., & Hsieh, M. (2001). Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation. Chemosphere, 45, 51–58.  https://doi.org/10.1016/S0045-6535(01)00016-9.CrossRefGoogle Scholar
  39. 39.
    Senthilkumaar, S., Varadarajan, P. R., Porkodi, K., & Subbhuraam, C. V. (2005). Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies. Journal of Colloid and Interface Science, 284, 78–82.  https://doi.org/10.1016/j.jcis.2004.09.027.CrossRefGoogle Scholar
  40. 40.
    Yalçın, N., & Sevinç, V. (2000). Studies of the surface area and porosity of activated carbons prepared from rice husks. Carbon N Y, 38, 1943–1945.  https://doi.org/10.1016/S0008-6223(00)00029-4.CrossRefGoogle Scholar
  41. 41.
    Girgis, B. S., & El-Hendawy, A.-N. A. (2002). Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Microporous and Mesoporous Materials, 52, 105–117.  https://doi.org/10.1016/S1387-1811(01)00481-4.CrossRefGoogle Scholar
  42. 42.
    Akkus P (2006) Sugar esterious synthesis using lipase. G.Y.T.E. Institute of Engineering and Science.Google Scholar
  43. 43.
    Gregory J (1994) Introduction to modern colloid science, Robert J. hunter. Oxford University press, Oxford, 1993. . viii + 338, price £14.95 (paperback). ISBN 0-19-855386-2. Polymer International 35:105–106 .  https://doi.org/10.1002/pi.1994.210350115.
  44. 44.
    Doğan, M., Alkan, M., Demirbaş, Ö., Özdemir, Y., & Özmetin, C. (2006). Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions. Chemical Engineering Journal, 124, 89–101.  https://doi.org/10.1016/j.cej.2006.08.016.CrossRefGoogle Scholar
  45. 45.
    Mantsch HH, Chapman D (1996) Infrared spectroscopy of biomolecules. Wiley-Liss.Google Scholar
  46. 46.
    W. Tasman EA (1988) Dane’s Clinical Ophthalmology Lippincott.Google Scholar
  47. 47.
    Demirbas O (2006) Methyl violetine biosorption on casein surface. Balikesir.Google Scholar
  48. 48.
    Tekin, N., Demirbaş, Ö., & Alkan, M. (2005). Adsorption of cationic polyacrylamide onto kaolinite. Microporous and Mesoporous Materials, 85, 340–350.  https://doi.org/10.1016/j.micromeso.2005.07.004.CrossRefGoogle Scholar
  49. 49.
    Vermöhlen, K., Lewandowski, H., Narres, H.-D., & Schwuger, M. (2000). Adsorption of polyelectrolytes onto oxides — the influence of ionic strength, molar mass, and Ca2+ ions. Colloids Surfaces A Physicochem Eng Asp, 163, 45–53.  https://doi.org/10.1016/S0927-7757(99)00429-X.CrossRefGoogle Scholar
  50. 50.
    Dalla-Vecchia, R., Sebrão, D., Nascimento, M. d. G., & Soldi, V. (2005). Carboxymethylcellulose and poly(vinyl alcohol) used as a film support for lipases immobilization. Process Biochemistry, 40, 2677–2682.  https://doi.org/10.1016/j.procbio.2004.12.004.CrossRefGoogle Scholar
  51. 51.
    Pronk, W., Kerkhof, P. J. A. M., Van Helden, C., & van’T Riet, K. (1988). The hydrolysis of triglycerides by immobilized lipase in a hydrophiiic membrane reactor. Biotechnology and Bioengineering, 32, 512–518.  https://doi.org/10.1002/bit.260320414.CrossRefGoogle Scholar
  52. 52.
    Bhattacharya, A., Naiya, T., Mandal, S., & Das, S. (2007). Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents. Chemical Engineering Journal.  https://doi.org/10.1016/j.cej.2007.05.021.
  53. 53.
    Sharma, Y. C. (2001). Effect of temperature on interfacial adsorption of Cr(VI) on Wollastonite. Journal of Colloid and Interface Science, 233, 265–270.  https://doi.org/10.1006/jcis.2000.7232.CrossRefGoogle Scholar
  54. 54.
    Sariri, R., & Tighe, B. (1996). Effect of surface chemistry on protein interaction with hydrogel contact lenses. J Iran Polym, 5, 66.Google Scholar
  55. 55.
    Xu, H., Li, M., & He, B. (1995). Immobilization of Candida cylindracea lipase on methyl acrylate-divinyl benzene copolymer and its derivatives. Enzyme and Microbial Technology, 17, 194–199.  https://doi.org/10.1016/0141-0229(94)00038-S.CrossRefGoogle Scholar
  56. 56.
    Montero, S., Blanco, A., Virto, M. D., Carlos Landeta, L., Agud, I., Solozabal, R., Lascaray, J., de Renobales, M., Llama, M. J., & Serra, J. L. (1993). Immobilization of Candida rugosa lipase and some properties of the immobilized enzyme. Enzyme and Microbial Technology, 15, 239–247.  https://doi.org/10.1016/0141-0229(93)90144-Q.CrossRefGoogle Scholar
  57. 57.
    Lu, C. F., Nadarajah, A., & Chittur, K. K. (1994). A comprehensive model of multiprotein adsorption on surfaces. Journal of Colloid and Interface Science, 168, 152–161.  https://doi.org/10.1006/jcis.1994.1404.CrossRefGoogle Scholar
  58. 58.
    Giacomelli, C. E., Bremer, M. G. E., & Norde, W. (1999). ATR-FTIR study of IgG adsorbed on different silica surfaces. Journal of Colloid and Interface Science, 220, 13–23.  https://doi.org/10.1006/jcis.1999.6479.CrossRefGoogle Scholar
  59. 59.
    Guo, Y., & Bustin, R. (1998). FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinite in coals. International Journal of Coal Geology, 37, 29–53.  https://doi.org/10.1016/S0166-5162(98)00019-6.CrossRefGoogle Scholar
  60. 60.
    Figueiredo, J., Pereira, M. F., Freitas, M. M., & Órfão, J. J. (1999). Modification of the surface chemistry of activated carbons. Carbon N Y, 37, 1379–1389.  https://doi.org/10.1016/S0008-6223(98)00333-9.CrossRefGoogle Scholar
  61. 61.
    Li, Y.-H., Zhu, Y., Zhao, Y., Wu, D., & Luan, Z. (2006). Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution. Diamond and Related Materials, 15, 90–94.  https://doi.org/10.1016/j.diamond.2005.07.004.CrossRefGoogle Scholar
  62. 62.
    Mall, I. D., Srivastava, V. C., & Agarwal, N. K. (2006). Removal of Orange-G and methyl violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses. Dyes and Pigments, 69, 210–223.  https://doi.org/10.1016/j.dyepig.2005.03.013.CrossRefGoogle Scholar
  63. 63.
    El-Naggar, I. M., Zakaria, E. S., Ali, I. M., Khalil, M., & El-Shahat, M. F. (2012). Kinetic modeling analysis for the removal of cesium ions from aqueous solutions using polyaniline titanotungstate. Arabian Journal of Chemistry, 5, 109–119.  https://doi.org/10.1016/j.arabjc.2010.09.028.CrossRefGoogle Scholar
  64. 64.
    Ho, Y., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.  https://doi.org/10.1016/S0032-9592(98)00112-5.CrossRefGoogle Scholar
  65. 65.
    Özcan, A., Öncü, E. M., & Özcan, A. S. (2006). Kinetics, isotherm and thermodynamic studies of adsorption of acid blue 193 from aqueous solutions onto natural sepiolite. Colloids Surfaces A Physicochem Eng Asp, 277, 90–97.  https://doi.org/10.1016/j.colsurfa.2005.11.017.CrossRefGoogle Scholar
  66. 66.
    Chiou, M.-S., Ho, P.-Y., & Li, H.-Y. (2004). Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes and Pigments, 60, 69–84.  https://doi.org/10.1016/S0143-7208(03)00140-2.CrossRefGoogle Scholar
  67. 67.
    Guibal, E., McCarrick, P., & Tobin, J. M. (2003). Comparison of the sorption of anionic dyes on activated carbon and chitosan derivatives from dilute solutions. Separation Science and Technology, 38, 3049–3073.  https://doi.org/10.1081/SS-120022586.CrossRefGoogle Scholar
  68. 68.
    Özcan, A., & Özcan, A. S. (2005). Adsorption of acid red 57 from aqueous solutions onto surfactant-modified sepiolite. Journal of Hazardous Materials, 125, 252–259.  https://doi.org/10.1016/j.jhazmat.2005.05.039.CrossRefGoogle Scholar
  69. 69.
    Kannan, N., & Sundaram, M. M. (2001). Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes and Pigments, 51, 25–40.  https://doi.org/10.1016/S0143-7208(01)00056-0.CrossRefGoogle Scholar
  70. 70.
    Rahimi Gorji M, Debbaut C, Steuperaert M, Vanhove C, Segers P, Ceelen W (2018) CFD model of the interstitial fluid pressure (IFP) in realistic tumor geometries of peritoneal metastases from ovarian cancer. Biomed Eng 17th Natl Day, Abstr.Google Scholar
  71. 71.
    Rahimi-Gorji, M., Ghajar, M., Kakaee, A.-H., & Domiri Ganji, D. (2017). Modeling of the air conditions effects on the power and fuel consumption of the SI engine using neural networks and regression. J Brazilian Soc Mech Sci Eng, 39, 375–384.  https://doi.org/10.1007/s40430-016-0539-1.CrossRefGoogle Scholar
  72. 72.
    Sureshkumar Raju S, Ganesh Kumar K, Rahimi-Gorji M, Khan I (2019) Darcy–Forchheimer flow and heat transfer augmentation of a viscoelastic fluid over an incessant moving needle in the presence of viscous dissipation. Microsystem Technologies.  https://doi.org/10.1007/s00542-019-04340-3.
  73. 73.
    Hussanan, A., Khan, I., Gorji, M. R., & Khan, W. A. (2019). CNTS-water–based nanofluid over a stretching sheet. Bionanoscience, 9, 21–29.  https://doi.org/10.1007/s12668-018-0592-6.CrossRefGoogle Scholar
  74. 74.
    Ahmed N, Ali Shah N, Ahmad B, Shah SIA, Ulhaq S, −Gorji MR (2018) Transient MHD convective flow of fractional nanofluid between vertical plates. Shahid Chamran Univ Ahvaz.  https://doi.org/10.22055/JACM.2018.26947.1364.
  75. 75.
    Kakaei, K., Rahimi, A., Husseindoost, S., Hamidi, M., Javan, H., & Balavandi, A. (2016). Fabrication of Pt-CeO2 nanoparticles supported sulfonated reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation. International Journal of Hydrogen Energy, 41, 3861–3869.  https://doi.org/10.1016/j.ijhydene.2016.01.013.CrossRefGoogle Scholar
  76. 76.
    Ho, Y. S., Porter, J. F., & McKay, G. (2002). No title. Water, Air, and Soil Pollution, 141, 1–33.  https://doi.org/10.1023/A:1021304828010.CrossRefGoogle Scholar
  77. 77.
    Laidler KJ (Keith J, Meiser JH, Sanctuary BC (2003) Physical chemistry. Houghton Mifflin.Google Scholar
  78. 78.
    K.J. Laidler JMM (1999) Physical chemistry. New York. NY.Google Scholar
  79. 79.
    Singh, D. (2000). Studies of the adsorption thermodynamics of oxamyl on fly ash. Adsorption Science and Technology, 18, 741–748.  https://doi.org/10.1260/0263617001493783.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tuzluca Vocational High SchoolIgdir UniversityIgdirTurkey
  2. 2.Department of Chemistry, Faculty of Science and LiteratureUniversity of BalikesirBalikesirTurkey
  3. 3.Sen Research Group, Department of Biochemistry, Faculty of Arts and ScienceDumlupınar UniversityKütahyaTurkey
  4. 4.Department of Environmental, Faculty of EngineeringUniversity of IgdirIgdirTurkey
  5. 5.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  6. 6.Center of Excellence for Advanced Materials ResearchKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations