Advertisement

Identification of Secondary Metabolite Gene Clusters in the Genome of Bacillus pumilus Strains 7P and 3-19

  • Anna A. Toymentseva
  • Daria S. PudovaEmail author
  • Margarita R. Sharipova
Article
  • 10 Downloads

Abstract

Members of Bacillus pumilus species are industrially important microorganisms able to secrete a wide range of hydrolytic enzymes and secondary metabolites. However, the traditional methods (based on phenotypes) used to identify such products are time-consuming and are not very specific. Currently, the availability of whole genome sequencing and bioinformatics tools has become a powerful approach for identification of gene clusters associated with the synthesis of substances useful for biotechnology. In order to estimate the potential industrial significance and application of B. pumilus, genome sequencing of two strains (7P and 3-19) and searching of secondary metabolite clusters were performed using antiSMASH program. These analyses revealed 11 potential gene clusters for the synthesis of bacilysin, lichenysin, bacteriocin, and other substances.

Keywords

Whole genome sequencing Bacillus pumilus Secondary metabolites Bacilysin Lichenysin 

Notes

Acknowledgments

This work was performed in accordance with the Russian Government Program of Competitive Growth of Kazan Federal University.

Funding Information

The reported study was funded by RFBR, according to the research project No. 19-08-00853 (A).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

References

  1. 1.
    Munimbazi, C., & Bullerman, L. B. (1998). Isolation and partial characterization on antifungal metabolites of Bacillus pumillus. Journal of Applied Microbiology, 84, 959–968.  https://doi.org/10.1046/j.1365-2672.1998.00431.x.CrossRefGoogle Scholar
  2. 2.
    Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337–350.  https://doi.org/10.1146/annurev.phyto.43.032904.092924.CrossRefGoogle Scholar
  3. 3.
    Padaria, J. C., & Singh, A. (2009). Molecular characterization of soil bacteria antagonistic to Rhizoctonia solani, sheath blight of rice. Journal of Environmental Science and Health, 44(4), 397–402.  https://doi.org/10.1080/03601230902801125.CrossRefGoogle Scholar
  4. 4.
    Hollensteiner, J., Poehlein, A., Daniel, R., Liesegang, H., Vidal, S., & Wemheuer, F. (2017). Draft genome sequence of Bacillus pumilus strain GM3FR, an endophyte isolated from aerial plant tissues of Festuca rubra L. Genome Announcements, 5(13), e00085–e00017.  https://doi.org/10.1128/genomeA.00085-17.CrossRefGoogle Scholar
  5. 5.
    Sharipova, M. R., Balaban, N. P., & Leshchinskaya, I. N. (1994). Production of extracellular alkaline phosphatase from antibiotic resistant strain of Bacillus intermedius. Microbiology, 63(1), 52–58.Google Scholar
  6. 6.
    Balaban, N. P., Sharipova, M. R., Usmanova, A. M., Itskovich, E. L., & Leshchinskaia, I. B. (1993). Alkaline extracellular proteinase from Bacillus intermedius. Isolation, purification, and some properties of the enzyme. Biokhimiia, 58, 1923–1928.Google Scholar
  7. 7.
    Lee, K. D., Gray, E. J., Mabood, F., Jung, W. J., Charles, T., Clark, S. R., Ly, A., Souleimanov, A., Zhou, X., & Smith, D. L. (2009). The class IId bacteriocin thuricin-17 increases plant growth. Planta, 29(4), 747–755.  https://doi.org/10.1007/s00425-008-0870-6.CrossRefGoogle Scholar
  8. 8.
    Fan, H., Ru, J., Zhang, Y., Wang, Q., & Li, Y. (2017). Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiological Research, 199, 89–97.  https://doi.org/10.1016/j.micres.2017.03.004.CrossRefGoogle Scholar
  9. 9.
    Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology, 62(3), 293–300.Google Scholar
  10. 10.
    Köchl, S., Niederstätter, H., & Parson, W. (2005). DNA extraction and quantification of forensic samples using the phenol-chloroform method and real-time PCR. Methods in Molecular Biology, 297, 13–29.  https://doi.org/10.1385/1-59259-867-6:013.Google Scholar
  11. 11.
    Chaisson, M. J., & Pevzner, P. A. (2008). Short read fragment assembly of bacterial genomes. Genome Research, 18, 324–330.  https://doi.org/10.1101/gr.7088808.CrossRefGoogle Scholar
  12. 12.
    Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics., 29, 1072–1075.  https://doi.org/10.1093/bioinformatics/btt086.CrossRefGoogle Scholar
  13. 13.
    Müller, S., Garcia-Gonzalez, E., Mainz, A., Hertlein, G., Heid, N. C., Mösker, E., van den Elst, H., Overkleeft, H. S., Genersch, E., & Süssmuth, R. D. (2014). Paenilamicin: structure and biosynthesis of a hybrid nonribosomal peptide/polyketide antibiotic from the bee pathogen Paenibacillus larvae. Angewandte Chemie (International Ed. in English), 53(40), 10821–10825.  https://doi.org/10.1002/anie.201404572.CrossRefGoogle Scholar
  14. 14.
    Garcia-Gonzalez, E., Müller, S., Hertlein, G., Heid, N., Süssmuth, R. D., & Genersch, E. (2014). Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honeybee pathogenic bacterium Paenibacillus larvae. Microbiologyopen., 3(5), 642–656.  https://doi.org/10.1002/mbo3.195.CrossRefGoogle Scholar
  15. 15.
    Madslien, E. H., Rønning, H. T., Lindback, T., Hassel, B., Andersson, M. A., & Granum, P. E. (2013). Lichenysin is produced by most Bacillus licheniformis strains. Journal of Applied Microbiology, 115, 1068–1080.  https://doi.org/10.1111/jam.12299.Google Scholar
  16. 16.
    Grangemard, I1., Wallach, J., Maget-Dana, R., & Peypoux, F. (2001). Lichenysin: a more efficient cation chelator than surfactin. Applied Biochemistry and Biotechnology, 90(3), 199–210.CrossRefGoogle Scholar
  17. 17.
    Joshi, S. J., Al-Wahaibi, Y. M., Al-Bahry, S. N., et al. (2016). Production, characterization, and application of Bacillus licheniformis W16 biosurfactant in enhancing oil recovery. Frontiers in Microbiology, 7, 1853.  https://doi.org/10.3389/fmicb.2016.01853.Google Scholar
  18. 18.
    Koumoutsi, A., Chen, X. H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J., & Borriss, R. (2004). Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of Bacteriology, 186, 1084–1096.  https://doi.org/10.1128/JB.186.4.1084-1096.2004.CrossRefGoogle Scholar
  19. 19.
    Tang, Q., Bie, X., Lu, Z., Lv, F., Tao, Y., & Qu, X. (2014). Effects of fengycin from Bacillus subtilis fmbj on apoptosis and necrosis in Rhizopus stolonifer. Journal of Microbiology, 52(8), 675–680.  https://doi.org/10.1007/s12275-014-3605-3.CrossRefGoogle Scholar
  20. 20.
    Deleu, M., Paquot, M., & Nylander, T. (2005). Fengycin interaction with lipid monolayers at the air-aqueous interface-implications for the effect of fengycin on biological membranes. Journal of Colloid and Interface Science, 283(2), 358–365.  https://doi.org/10.1016/j.jcis.2004.09.036.CrossRefGoogle Scholar
  21. 21.
    Cane, D. E., & Ikeda, H. (2012). Exploration and mining of the bacterial terpenome. Accounts of Chemical Research, 45(3), 463–472.  https://doi.org/10.1021/ar200198d.CrossRefGoogle Scholar
  22. 22.
    Parisot, J., Carey, S., Breukink, E., Chan, W. C., Narbad, A., & Bonev, B. (2008). Antimicrobial Agents and Chemotherapy, 52(2), 612–618.  https://doi.org/10.1128/AAC.00836-07.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anna A. Toymentseva
    • 1
  • Daria S. Pudova
    • 1
    Email author
  • Margarita R. Sharipova
    • 1
  1. 1.Institute of Fundamental Medicine and BiologyKazan (Volga region) Federal UniversityKazanRussia

Personalised recommendations