Advertisement

BioNanoScience

, Volume 9, Issue 1, pp 203–214 | Cite as

Sensitivity Study of Cancer Antigens (CA-125) Detection Using Interdigitated Electrodes Under Microfluidic Flow Condition

  • Bharath Babu Nunna
  • Debdyuti Mandal
  • Joo Un Lee
  • Shiqiang Zhuang
  • Eon Soo LeeEmail author
Article

Abstract

The integrated module of microfluidics with the biosensor is of great research interest with the increasing trend of lab-on-the-chip and point-of-care devices. Though there are numerous studies performed on associating the microfluidics to the biosensing mechanisms, the study of the sensitivity variation due to microfluidic flow is very much limited. In this paper, a study of the sensitivity variation while detecting the CA-125 antigen using interdigitated electrodes, with static drop and with microfluidic flow of biofluid sample (CA-125 antigens with phosphate buffer saline solution), was performed. When the biofluid sample was passed on the CA-125 antibodies that are immobilized on the gold interdigitated electrodes, the capacitance variation of the sensing circuit was caused due to the antigen–antibody interaction. However, the capacitance measured during CA-125 antigen–antibody interaction with the microfluidic flow condition (270.34 pF) was lower than static drop condition (296.09 pF) due to the instability of the immobilized antibodies on the sensing surface that was caused by the shear stress on the sensing surface during the microfluidic flow. This study helps to understand the capacitive sensitivity issues in the biosensing mechanisms with microfluidic platform.

Keywords

Biosensing Microfluidics Interdigitated electrodes Capacitive sensing Shear flow Stability of biomarkers 

Notes

Acknowledgements

The authors acknowledge the research support from the New Jersey Institute of Technology (NJIT) and National Science Foundation (Grant ID: NSF IIP-1643861). This research is carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704.

References

  1. 1.
    Buerk, D. G. (1995). Biosensors: theory and applications. Boca Raton: CRC Press.Google Scholar
  2. 2.
    Perumal, V., & Hashim, U. (2014). Advances in biosensors: principle, architecture and applications. Journal of Applied Biomedicine, 12(1), 1–15.Google Scholar
  3. 3.
    Kirsch, J., Siltanen, C., Zhou, Q., Revzin, A., & Simonian, A. (2013). Biosensor technology: recent advances in threat agent detection and medicine. Chemical Society Reviews, 42(22), 8733–8768.Google Scholar
  4. 4.
    Vadgama, P., & Crump, P. W. (1992). Biosensors: recent trends. A review. Analyst, 117(11), 1657–1670.Google Scholar
  5. 5.
    Grieshaber, D., MacKenzie, R., Voeroes, J., & Reimhult, E. (2008). Electrochemical biosensors-sensor principles and architectures. Sensors, 8(3), 1400–1458.Google Scholar
  6. 6.
    Ronkainen, N. J., Halsall, H. B., & Heineman, W. R. (2010). Electrochemical biosensors. Chemical Society Reviews, 39(5), 1747–1763.Google Scholar
  7. 7.
    Daniels, J. S., & Pourmand, N. (2007). Label-free impedance biosensors: opportunities and challenges. Electroanalysis, 19(12), 1239–1257.Google Scholar
  8. 8.
    Berggren, C., Bjarnason, B., & Johansson, G. (2001). Capacitive biosensors. Electroanalysis, 13(3), 173–180.Google Scholar
  9. 9.
    Kumar, S., Kumar, S., Ali, M., Anand, P., Agrawal, V. V., John, R., Maji, S., & Malhotra, B. D. (2013). Microfluidic-integrated biosensors: Prospects for point-of-care diagnostics. Biotechnology Journal, 8(11), 1267–1279.Google Scholar
  10. 10.
    Itoh, D., Sassa, F., Nishi, T., Kani, Y., Murata, M., & Suzuki, H. (2012). Droplet-based microfluidic sensing system for rapid fish freshness determination. Sensors and Actuators B: Chemical, 171, 619–626.Google Scholar
  11. 11.
    Lee, E. S., Nunna, B. B. (2018). United States patent application 15/811186. Biomarker detection and self-separation of serum during capillary flow.Google Scholar
  12. 12.
    Lee, E. S., Nunna, B. B. (2017). United States patent application PCT/US2017/038554. Microfluidic diagnostic assembly.Google Scholar
  13. 13.
    Lee, E. S., Nunna, B. B. (2018). United States Patent Application PCT/US2018/018,316. Enhanced sensitivity and specificity for point-of-care (POC) micro biochip.Google Scholar
  14. 14.
    Puigmartí-Luis, J. (2014). Microfluidic platforms: a mainstream technology for the preparation of crystals. Chemical Society Reviews, 43(7), 2253–2271.Google Scholar
  15. 15.
    Choi, K., Ng, A. H. C., Fobel, R., & Wheeler, A. R. (2012). Digital microfluidics. Annual Review of Analytical Chemistry, 5, 413–440.Google Scholar
  16. 16.
    Mark, D., Haeberle, S., Roth, G., Von Stetten, F., & Zengerle, R. (2010). Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. In Microfluidics based microsystems (pp. 305–376). Dordrecht: Springer.Google Scholar
  17. 17.
    Munge, B. S., Stracensky, T., Gamez, K., DiBiase, D., & Rusling, J. F. (2016). Multiplex immunosensor arrays for electrochemical detection of cancer biomarker proteins. Electroanalysis, 28(11), 2644–2658.Google Scholar
  18. 18.
    What is CA-125 - ovarian cancer research fund alliance. (2017). Ovarian Cancer Research Fund Alliance. https://ocrfa.org/patients/about-ovarian-cancer/symptoms-and-detection/what-is-ca-125/.
  19. 19.
    Quest Diagnostics Incorporated. (2017). CA-125(Test code: 29256 & CPT Code(s)86304. http://www.questdiagnostics.com/testcenter/BUOrderInfo.action?tc=29256&labCode=PHP.
  20. 20.
    Nunna, B. B., Mandal, D., Zhuang, S., Lee, E. S. (2017). A standalone micro biochip to monitor the cancer progression by measuring cancer antigens as a point-of-care (POC) device for enhanced cancer management. In Healthcare innovations and point of care technologies (HI-POCT), 2017 IEEE, pp. 212–215. IEEE.Google Scholar
  21. 21.
    Hasanzadeh, M., Sahmani, R., Solhi, E., Mokhtarzadeh, A., Shadjou, N., & Mahboob, S. (2018). Ultrasensitive immunoassay of carcinoma antigen 125 in untreated human plasma samples using gold nanoparticles with flower like morphology: a new platform in early stage diagnosis of ovarian cancer and efficient management. International Journal of Biological Macromolecules, 119, 913–925.Google Scholar
  22. 22.
    Wu, L., Chen, J., Du, D., & Ju, H. (2006). Electrochemical immunoassay for CA125 based on cellulose acetate stabilized antigen/colloidal gold nanoparticles membrane. Electrochimica Acta, 51(7), 1208–1214.Google Scholar
  23. 23.
    Paul, K. B., Singh, V., Vanjari, S. R. K., & Singh, S. G. (2017). One step biofunctionalized electrospun multiwalled carbon nanotubes embedded zinc oxide nanowire interface for highly sensitive detection of carcinoma antigen-125. Biosensors and Bioelectronics, 88, 144–152.Google Scholar
  24. 24.
    Zhu, Q., Chai, Y., Yuan, R., & Zhuo, Y. (2013). Simultaneous detection of four biomarkers with one sensing surface based on redox probe tagging strategy. Analytica Chimica Acta, 800, 22–28.Google Scholar
  25. 25.
    Viswanathan, S., Rani, C., Ribeiro, S., & Delerue-Matos, C. (2012). Molecular imprinted nanoelectrodes for ultra sensitive detection of ovarian cancer marker. Biosensors and Bioelectronics, 33(1), 179–183.Google Scholar
  26. 26.
    Fu, X.-H. (2009). Sandwich-type electrochemical immunoassay for carbohydrate antigen-125 using multifunctional magnetic beads with ferrocenyl-tethered dendrimer as label. Chemistry Letters, 38(7), 656–657.Google Scholar
  27. 27.
    Tang, D., Su, B., Tang, J., Ren, J., & Chen, G. (2010). Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads. Analytical Chemistry, 82(4), 1527–1534.Google Scholar
  28. 28.
    Wang, J., & Yau, S.-T. (2011). Field-effect amperometric immuno-detection of protein biomarker. Biosensors and Bioelectronics, 29(1), 210–214.Google Scholar
  29. 29.
    Bangar, M. A., Shirale, D. J., Chen, W., Myung, N. V., & Mulchandani, A. (2009). Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker. Analytical Chemistry, 81(6), 2168–2175.Google Scholar
  30. 30.
    Tang, D., Yuan, R., & Chai, Y. (2007). Magnetic control of an electrochemical microfluidic device with an arrayed immunosensor for simultaneous multiple immunoassays. Clinical Chemistry, 53(7), 1323–1329.Google Scholar
  31. 31.
    Fu, X.-H. (2010). Poly (amidoamine) dendrimer-functionalized magnetic beads as an immunosensing probe for electrochemical immunoassay for carbohydrate antigen-125 in human serum. Analytical Letters, 43(3), 455–465.Google Scholar
  32. 32.
    Chen, S., Yuan, R., Chai, Y., Min, L., Li, W., & Xu, Y. (2009). Electrochemical sensing platform based on tris (2, 2′-bipyridyl) cobalt (III) and multiwall carbon nanotubes–Nafion composite for immunoassay of carcinoma antigen-125. Electrochimica Acta, 54(28), 7242–7247.Google Scholar
  33. 33.
    Guo, A., Wu, D., Ma, H., Zhang, Y., Li, H., Du, B., & Wei, Q. (2013). An ultrasensitive enzyme-free electrochemical immunosensor for CA125 using Au@ Pd core–shell nanoparticles as labels and platforms for signal amplification. Journal of Materials Chemistry B, 1(33), 4052–4058.Google Scholar
  34. 34.
    Raghav, R., & Srivastava, S. (2015). Core–shell gold–silver nanoparticles based impedimetric immunosensor for cancer antigen CA125. Sensors and Actuators B: Chemical, 220, 557–564.Google Scholar
  35. 35.
    Goddard, J. M., & Erickson, D. (2009). Bioconjugation techniques for microfluidic biosensors. Analytical and Bioanalytical Chemistry, 394(2), 469.Google Scholar
  36. 36.
    Abdulbari, A. H., & Basheer, E. A. (2017). Investigating the enhancement of microfluidics-based electrochemical biosensor response with different microchannel dimensions. Current Analytical Chemistry, 13(5), 361–369.Google Scholar
  37. 37.
    Erickson, D., Liu, X., Venditti, R., Li, D., & Krull, U. J. (2005). Electrokinetically based approach for single-nucleotide polymorphism discrimination using a microfluidic device. Analytical Chemistry, 77(13), 4000–4007.Google Scholar
  38. 38.
    Tsouti, V., Boutopoulos, C., Zergioti, I., & Chatzandroulis, S. (2011). Capacitive microsystems for biological sensing. Biosensors and Bioelectronics, 27(1), 1–11.Google Scholar
  39. 39.
    Zhu, X., & Ahn, C. H. (2005). Electrochemical determination of reversible redox species at interdigitated array micro/nanoelectrodes using charge injection method. IEEE Transactions on NanoBioscience, 4, 164–169.Google Scholar
  40. 40.
    Zou, Z., Kai, J., Rust, M. J., Han, J., & Ahn, C. H. (2007). Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement. Sensors and Actuators A: Physical, 136(2), 518–526.Google Scholar
  41. 41.
    Loyprasert, S., Thavarungkul, P., Asawatreratanakul, P., & Wongkittisuksa, B. (2008). ChusakLimsakul, and ProespichayaKanatharana. “Label-free capacitive immunosensor for microcystin-LR using self-assembled thiourea monolayer incorporated with Ag nanoparticles on gold electrode”. Biosens Bioelectron, 24(1), 78–86.Google Scholar
  42. 42.
    Sperling, R. A., & Parak, W. J. (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368(1915), 1333–1383.Google Scholar
  43. 43.
    Altintas, Z., Kallempudi, S. S., & Gurbuz, Y. (2014). Gold nanoparticle modified capacitive sensor platform for multiple marker detection. Talanta, 118, 270–276.Google Scholar
  44. 44.
    Li, X., Yu, M., Chen, Z., Lin, X., & Wu, Q. (2017). A sensor for detection of carcinoembryonic antigen based on the polyaniline-Au nanoparticles and gap-based interdigitated electrode. Sensors and Actuators B: Chemical, 239, 874–882.Google Scholar
  45. 45.
    Pingarrón, J. M., Yáñez-Sedeño, P., & González-Cortés, A. (2008). Gold nanoparticle-based electrochemical biosensors. Electrochimica Acta, 53(19), 5848–5866.Google Scholar
  46. 46.
    Panton, R. L. (2006). Incompressible flow. Hoboken: John Wiley & Sons.zbMATHGoogle Scholar
  47. 47.
    Nunna, B. B., Mandal, D., Zhuang, S., & Lee, E. S. (2017). Innovative point-of-care (POC) micro biochip for early stage ovarian cancer diagnostics. Sensors & Transducers Journal, 214(7), 2017.Google Scholar
  48. 48.
    Kallempudi, S. S., & Gurbuz, Y. (2011). A nanostructured-nickel based interdigitated capacitive transducer for biosensor applications. Sensors and Actuators B: Chemical, 160(1), 891–898.Google Scholar
  49. 49.
    Mandal, D., Nunna, B. B., Zhuang, S., & Lee, E. S. (2017). Detection of CA-125 antigens using carbon nanotubes based biosensor under shear flow conditions. Nano-structures & Nano-objects.  https://doi.org/10.1016/j.nanoso.2017.09.013.
  50. 50.
    Quail, M. A. (2010). DNA: mechanical breakage. eLS.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial EngineeringNew Jersey Institute of TechnologyNewarkUSA
  2. 2.Provost Summer Research Intern at New Jersey Institute of Technology & Tenafly High SchoolTenaflyUSA

Personalised recommendations