Advertisement

Selection and Quantification of Objects in Microscopic Images: from Multi-Criteria to Multi-Threshold Analysis

  • Mikhail I. Bogachev
  • Vladimir Yu Volkov
  • Gleb Kolaev
  • Liliya Chernova
  • Innokentii Vishnyakov
  • Airat KayumovEmail author
Article
  • 32 Downloads

Abstract

Due to the increased number of applications of both microscopic imaging and image analysis including biomedical studies, the design of specialized algorithms and tools to facilitate quantitative assessment of objects in the image content is of urgent need. Recently, a number of approaches ranging from object counting by machine learning methods to statistical image analysis have been suggested and successfully implemented to resolve the cell quantification problem. Here, we revisit the above problem considering samples where objects presented in the same images have to be explicitly distinguished and quantified without involving any dedicated experimental setting like differential fluorescent staining. We consider several possible classification criteria and show explicitly how their combination in a single algorithm can be used to improve results in complex images where single criteria-based rules inevitably fail. Finally, we suggest a possible approach for the analysis of non-homogeneous images based on combining object selection results for different threshold values thus enhancing the algorithm from multi-criteria to multi-threshold analysis. To demonstrate the performance of the suggested solutions, we show several prominent examples of complex structures ranging from images containing both live and apoptotic cells as well as containing mixtures of globular and fibrous forms of heat-shock protein IbpA.

Keywords

Microscopy Image analysis Cell sub-populations Apoptotic Fibers 

Notes

Funding

The conceptualization of the image analysis methodology and algorithm design has been performed in the framework of the basic state assignment by the Ministry of Science and Higher Education of the Russian Federation to St. Petersburg Electrotechnical University (project No. 2.5475.2017/6.7 to Mikhail I Bogachev). Preparation of experimental biological samples and their microscopic imaging have been supported by the Russian Science Foundation (project No. 17-74-20065 to Innokentii Vishnyakov).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Atale, N., Gupta, S., Yadav, U. C. S., & Rani, V. (2014). Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques. Journal of Microscopy, 255(1), 7–19.  https://doi.org/10.1111/jmi.12133.CrossRefGoogle Scholar
  2. 2.
    Netuschil, L., Auschill, T. M., Sculean, A., & Arweiler, N. B. (2014). Confusion over live/dead stainings for the detection of vital microorganisms in oral biofilms - which stain is suitable?. BMC Oral Health: 14.  https://doi.org/10.1186/1472-6831-14-2
  3. 3.
    van der Pol, E., Hoekstra, A. G., Sturk, A., Otto, C., van Leeuwen, T. G., & Nieuwland, R. (2010). Optical and non-optical methods for detection and characterization of microparticles and exosomes. Journal of Thrombosis and Haemostasis, 8(12), 2596–2607.  https://doi.org/10.1111/j.1538-7836.2010.04074.x.CrossRefGoogle Scholar
  4. 4.
    Kayumov, A. R., Khakimullina, E. N., Sharafutdinov, I. S., Trizna, E. Y., Latypova, L. Z., Lien, H. T., Margulis, A. B., Bogachev, M. I., & Kurbangalieva, A. R. (2015). Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones. The Journal of Antibiotics, 68(5), 297–301.  https://doi.org/10.1038/ja.2014.143.CrossRefGoogle Scholar
  5. 5.
    Kayumov, A. R., Nureeva, A. A., Trizna, E. Y., Gazizova, G. R., Bogachev, M. I., Shtyrlin, N. V., Pugachev, M. V., Sapozhnikov, S. V., & Shtyrlin, Y. G. (2015). New derivatives of pyridoxine exhibit high antibacterial activity against biofilm-embedded staphylococcus cells. BioMed Research International, 2015.  https://doi.org/10.1155/2015/890968.
  6. 6.
    Trizna, E., Latypova, L., Kurbangalieva, A., Bogachev, M. I., & Kayumov, A. (2016). 2(5H)-Furanone derivatives as inhibitors of staphylococcal biofilms. BioNanoScience, 6(4), 423–426.CrossRefGoogle Scholar
  7. 7.
    Baidamshina, D. R., Trizna, E. Y., Holyavka, M. G., Bogachev, M. I., Artyukhov, V. G., Akhatova, F. S., et al. (2017). Targeting microbial biofilms using Ficin, a nonspecific plant protease. Scientific Reports, 7.  https://doi.org/10.1038/srep46068.
  8. 8.
    Sharafutdinov, I., Pavlova, A., Khabibrakhmanova, A., Kurbangalieva, A., & Kayumov, A. (2017). The antimicrobial effect of the 5-((-)bornyloxy)-2(5H)-furanone derivative on gram-positive bacteria. The FEBS Journal, 284, 143.Google Scholar
  9. 9.
    Trizna, E. Y., Khakimullina, E. N., Latypova, L. Z., Kurbangalieva, A. R., Sharafutdinov, I. S., Evtyugin, V. G., Babynin, E. V., Bogachev, M. I., & Kayumov, A. R. (2015). Thio derivatives of 2(5H)-Furanone as inhibitors against Bacillus subtilis biofilms. Acta Naturae, 7(2), 102–107.Google Scholar
  10. 10.
    Volkov, V. (2015). Extraction of extended small-scale objects in digital images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W6, 87–93.CrossRefGoogle Scholar
  11. 11.
    Klinger-Strobel M, Suesse H, Fischer D, Pletz MW, Makarewicz O (2016) A novel computerized cell count algorithm for biofilm analysis. PLoS One: 11(5).  https://doi.org/10.1371/journal.pone.0154937
  12. 12.
    Bogachev, M. I., Volkov, V. Y., Markelov, O. A., Trizna, E. Y., Baydamshina, D. R., Melnikov, V., Murtazina, R. R., Zelenikhin, P. V., Sharafutdinov, I. S., Kayumov, A. R. (2018). Fast and simple tool for the quantification of biofilm-embedded cells sub-populations from fluorescent microscopic images. PLoS One, 13(5).  https://doi.org/10.1371/journal.pone.0193267
  13. 13.
    Heydorn, A., Nielsen, A. T., Hentzer, M., Sternberg, C., Givskov, M., Ersboll, B. K., & Molin, S. (2000). Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology-Sgm, 146, 2395–2407.  https://doi.org/10.1099/00221287-146-10-2395.CrossRefGoogle Scholar
  14. 14.
    Beyenal, H., Donovan, C., Lewandowski, Z., & Harkin, G. (2004). Three-dimensional biofilm structure quantification. Journal of Microbiology Methods, 59(3), 395–413.  https://doi.org/10.1016/j.mimet.2004.08.003.CrossRefGoogle Scholar
  15. 15.
    Merritt, J. H., Kadouri, D. E., O’Toole, G. A. (2005). Growing and analyzing static biofilms. Current Protocols in Microbiology: Chapter 1:Unit 1B.1.  https://doi.org/10.1002/9780471729259.mc01b01s00
  16. 16.
    Ji, L., Piper, J., & Tang, J. Y. (1989). Erosion and dilation of binary images by arbitrary structuring elements using interval coding. Pattern Recognition Letters, 9(3), 201–209.CrossRefGoogle Scholar
  17. 17.
    Adams, R., & Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), 641–647.  https://doi.org/10.1109/34.295913.CrossRefGoogle Scholar
  18. 18.
    Nattkemper, T. W., Twellmann, T., Ritter, H., & Schubert, W. (2003). Human vs. machine: Evaluation of fluorescence micrographs. Computers in Biology and Medicine, 33(1), 31–43.CrossRefGoogle Scholar
  19. 19.
    Tchoukalova, Y. D., Harteneck, D. A., Karwoski, R. A., Tarara, J., & Jensen, M. D. (2003). A quick, reliable, and automated method for fat cell sizing. Journal of Lipid Research, 44(9), 1795–1801.  https://doi.org/10.1194/jlr.D300001-JLR200.CrossRefGoogle Scholar
  20. 20.
    Daims, H., Lucker, S., & Wagner, M. (2006). daime, a novel image analysis program for microbial ecology and biofilm research. Environmental Microbiology, 8(2), 200–213.  https://doi.org/10.1111/j.1462-2920.2005.00880.x.CrossRefGoogle Scholar
  21. 21.
    Vishnyakov, I. E., Bogachev, M. I., Salafutdinov, I., Borchsenius, S. N., & Kayumov, A. R. (2016). The temperature-dependent selectivity of potential interaction partners for the small heat shock protein IbpA from Acholeplasma laidlawii. BioNanoScience, 6(4), 437–442.CrossRefGoogle Scholar
  22. 22.
    Kayumov, A. R., Bogachev, M. I., Manuvera, V. A., Lazarev, V. N., Sabantsev, A. V., Artamonova TO, Borchsenius, S. N., & Vishnyakov, I. E. (2017). Recombinant small heat shock protein from Acholeplasma laidlawii increases the Escherichia coli viability in thermal stress by selective protein rescue. Molecular Biology, 51(1), 112–121.  https://doi.org/10.7868/S0026898417010086.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Radio Systems Department & Biomedical Engineering Research CentreSt. Petersburg Electrotechnical UniversitySt. PetersburgRussia
  2. 2.Molecular Genetics of Microorganisms Lab, Kazan Federal UniversityInstitute of Fundamental Medicine and BiologyKazanRussia
  3. 3.Institute of Cytology of the Russian Academy of ScienceSt. PetersburgRussia

Personalised recommendations