, Volume 9, Issue 1, pp 155–163 | Cite as

Evaluation of the Cytotoxic and Antioxidant Activity of Phyto-synthesized Silver Nanoparticles Using Cassia angustifolia Flowers

  • Devaraj BharathiEmail author
  • V. Bhuvaneshwari


The present study reports an eco-friendly phyto-synthesis of silver nanoparticles (AgNPs) using aqueous flower extract of Cassia angustifolia. Preliminarily, the synthesis of AgNPs from flower extract was visually confirmed by color change. Further formation, shape, size, and stability of the synthesized AgNPs were characterized by UV-visible spectroscopy, SEM, EDX, XRD, FT-IR, DLS, and zeta potential analyses. SEM images showed that the synthesized AgNPs were spherical in shape with an average size of 10–80 nm. Phyto-chemical analysis and FT-IR studies confirmed the role of phyto-compounds in the flower extract for the capping, formation, reduction, and stabilization of AgNPs. The antioxidant ability of AgNPs and plant extract was evaluated by DPPH, H2O2, and FRAP assays. The percentage of antioxidant activity was increased with increasing concentration of AgNPs. In addition, cytotoxic activity of the AgNPs was evaluated in human breast cancer cells (MCF 7). Phyto-synthesized AgNPs showed dose-depended manner (IC50 − 73.82 ± 0.50 μg/mL) of cytotoxic activity against MCF 7 cancer cells.


Cassia angustifolia flowers Silver nanoparticles Phyto-compounds XRD Antioxidant assays Cytotoxic activity 



The authors would like to thank Department of Science and Technology (DST-FIST), and College management for providing laboratory facilities and also we acknowledge the Dept. of Nanoscience and Technology, Karunya University, Coimbatore for extending their material characterization facilities.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12668_2018_577_MOESM1_ESM.docx (87 kb)
ESM 1 (DOCX 87 kb)


  1. 1.
    Sundararajan, B., Mahendran, G., Thamaraiselvi, R., & Kumari, B. R. (2016). Biological activities of synthesized silver nanoparticles from Cardiospermum halicacabum L. Bulletin of Materials Science, 39, 423–431.CrossRefGoogle Scholar
  2. 2.
    Ankamwar, B., Damle, C., Ahmad, A., & Sastry, M. (2005). Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. Journal of Nanoscience and Nanotechnology, 5, 1665–1671.CrossRefGoogle Scholar
  3. 3.
    Siamaki, A. R., Abd El Rahman, S. K., Abdelsayed, V., El-Shall, M. S., & Gupton, B. F. (2011). Microwave-assisted synthesis of palladium nanoparticles supported on graphene: A highly active and recyclable catalyst for carbon–carbon cross-coupling reactions. Journal of Catalysis, 279, 1–11.CrossRefGoogle Scholar
  4. 4.
    Starowicz, M., Stypuła, B., & Banaś, J. (2006). Electrochemical synthesis of silver nanoparticles. Electrochemistry Communications, 8, 227–230.CrossRefGoogle Scholar
  5. 5.
    Talebi, J., Halladj, R., & Askari, S. (2010). Sonochemical synthesis of silver nanoparticles in Y-zeolite substrate. Journal of Materials Science, 45, 3318–3324.CrossRefGoogle Scholar
  6. 6.
    Bae, D. S., Kim, E. J., Bang, J. H., Kim, S. W., Han, K. S., Lee, J. K., & Adair, J. H. (2005). Synthesis and characterization of silver nanoparticles by a reverse micelle process. Metals and Materials International, 11, 291–294.CrossRefGoogle Scholar
  7. 7.
    Temgire, M. K., & Joshi, S. S. (2004). Optical and structural studies of silver nanoparticles. Radiation Physics and Chemistry, 71, 1039–1044.CrossRefGoogle Scholar
  8. 8.
    Jin, R., Cao, Y., Mirkin, C. A., Kelly, K. L., Schatz, G. C., & Zheng, J. G. (2001). Photoinduced conversion of silver nanospheres to nanoprisms. Science, 294, 1901–1903.CrossRefGoogle Scholar
  9. 9.
    Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K., & Thangamani, S. (2012). Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pacific journal of tropical biomedicine, 2, 574–580.Google Scholar
  10. 10.
    Rout, Y., Behera, S., Ojha, A. K., & Nayak, P. L. (2012). Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities. Journal of Microbiology and Antimicrobials, 4, 103–109.CrossRefGoogle Scholar
  11. 11.
    Verma, D. K., Hasan, S. H., & Banik, R. M. (2016). Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy. Journal of Photochemistry and Photobiology B: Biology, 155, 51–59.CrossRefGoogle Scholar
  12. 12.
    Vijayan, R., Joseph, S., & Mathew, B. (2018). Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant, and catalytic activities. IET Nanobiotechnology, 12, 850–856.CrossRefGoogle Scholar
  13. 13.
    Abbasi, E., Milani, M., Fekri Aval, S., Kouhi, M., Akbarzadeh, A., Tayefi Nasrabadi, H., Nikasa, P., Joo, S. W., Hanifehpour, Y., Nejati-Koshki, K., & Samiei, M. (2016). Silver nanoparticles: Synthesis methods, bio-applications and properties. Critical Reviews in Microbiology, 42, 173–180.Google Scholar
  14. 14.
    Kim, C. G., Castro-Aceituno, V., Abbai, R., Lee, H. A., Simu, S. Y., Han, Y., & Yang, D. C. (2018). Caspase-3/MAPK pathways as main regulators of the apoptotic effect of the phyto-mediated synthesized silver nanoparticle from dried stem of Eleutherococcus senticosus in human cancer cells. Biomedicine & Pharmacotherapy, 99, 128–133.CrossRefGoogle Scholar
  15. 15.
    Manivasagan, P., Venkatesan, J., Senthilkumar, K., Sivakumar, K., & Kim, S. K. (2013). Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. BioMed Research International, 2013, 1–9.Google Scholar
  16. 16.
    Das, R., Gang, S., & Nath, S. S. (2011). Preparation and antibacterial activity of silver nanoparticles. Journal of Biomaterials and Nanobiotechnology, 2, 472–475.CrossRefGoogle Scholar
  17. 17.
    Elgorban, A. M., Al-Rahmah, A. N., Sayed, S. R., Hirad, A., Mostafa, A. A. F., & Bahkali, A. H. (2016). Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnology and Biotechnological Equipment, 30, 299–304.CrossRefGoogle Scholar
  18. 18.
    Bethu, M. S., Netala, V. R., Domdi, L., Tartte, V., & Janapala, V. R. (2018). Potential anticancer activity of biogenic silver nanoparticles using leaf extract of Rhynchosia suaveolens: An insight into the mechanism. Artificial cells, Nanomedicine, and Biotechnology, 1–11.
  19. 19.
    Bahrami-Teimoori, B., Nikparast, Y., Hojatianfar, M., Akhlaghi, M., Ghorbani, R., & Pourianfar, H. R. (2017). Characterisation and antifungal activity of silver nanoparticles biologically synthesised by Amaranthus retroflexus leaf extract. Journal of Experimental Nanoscience, 12, 129–139.CrossRefGoogle Scholar
  20. 20.
    Lade, B. D., & Patil, A. S. (2017). Silver nano fabrication using leaf disc of Passiflora foetida Linn. Applied Nanoscience, 7, 181–192.CrossRefGoogle Scholar
  21. 21.
    Sulaiman, G. M., Mohammed, W. H., Marzoog, T. R., Al-Amiery, A. A. A., Kadhum, A. A. H., & Mohamad, A. B. (2013). Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pacific Journal of Tropical Biomedicine, 3, 58–63.CrossRefGoogle Scholar
  22. 22.
    Ajitha, B., Reddy, Y. A. K., & Reddy, P. S. (2015). Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: Evaluation of their innate antimicrobial and catalytic activities. Journal of Photochemistry and Photobiology B: Biology, 146, 1–9.CrossRefGoogle Scholar
  23. 23.
    Patil, S., Chaudhari, G., Paradeshi, J., Mahajan, R., & Chaudhari, B. L. (2017). Instant green synthesis of silver-based herbo-metallic colloidal nanosuspension in Terminalia bellirica fruit aqueous extract for catalytic and antibacterial applications. 3 Biotech, 7, 36. Scholar
  24. 24.
    Sasikala, A., Rao, M. L., Savithramma, N., & Prasad, T. N. V. K. V. (2015). Synthesis of silver nanoparticles from stem bark of Cochlospermum religiosum (L.) Alston: an important medicinal plant and evaluation of their antimicrobial efficacy. Applied Nanoscience, I, 827–835.CrossRefGoogle Scholar
  25. 25.
    Abdel-Aziz, M. S., Shaheen, M. S., El-Nekeety, A. A., & Abdel-Wahhab, M. A. (2014). Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. Journal of Saudi Chemical Society, 18, 356–363.CrossRefGoogle Scholar
  26. 26.
    Vivek, R., Thangam, R., Muthuchelian, K., Gunasekaran, P., Kaveri, K., & Kannan, S. (2012). Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochemistry, 47, 2405–2410.CrossRefGoogle Scholar
  27. 27.
    Pattanayak, S., Mollick, M. M. R., Maity, D., Chakraborty, S., Dash, S. K., Chattopadhyay, S., & Chakraborty, M. (2015). Butea monosperma bark extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications. Journal of Saudi Chemical Society, 21, 673–684.CrossRefGoogle Scholar
  28. 28.
    Srivastava, M., Srivastava, S., & Rawat, A. K. S. (2010). Chemical standardization of Cassia angustifolia Vahl seed. Pharmacognosy Journal, 2, 554–560.CrossRefGoogle Scholar
  29. 29.
    Khorana, M. L., & Sanghavi, M. M. (1964). Two new glucosides from Cassia angustifolia pods. Journal of Pharmaceutical Sciences, 53, 110–112.CrossRefGoogle Scholar
  30. 30.
    Chaubey, M., & Kapoor, V. P. (2001). Structure of a galactomannan from the seeds of Cassia angustifolia Vahl. Carbohydrate Research, 332, 439–444.CrossRefGoogle Scholar
  31. 31.
    Al-Owaisi, M., Al-Hadiwi, N., & Khan, S. A. (2014). GC-MS analysis, determination of total phenolics, flavonoid content and free radical scavenging activities of various crude extracts of Moringa peregrina (Forssk.) Fiori leaves. Asian Pacific Journal of Tropical Biomedicine, 4, 964–970.CrossRefGoogle Scholar
  32. 32.
    Bhat, R. S., & Al-Daihan, S. (2014). Phytochemical constituents and antibacterial activity of some green leafy vegetables. Asian Pacific Journal of Tropical Biomedicine, I, 189–193.CrossRefGoogle Scholar
  33. 33.
    Sithara, N. V., Komathi, S., Rajalakshmi, G., Queen, J., & Bharathi, D. (2016). Phytochemical analysis of Andrographis Paniculata using different solvents. European Journal of Biotechnology and Bioscience, 4, 28–30.Google Scholar
  34. 34.
    Gautam, M. K., Gangwar, M., Nath, G., Rao, C. V., & Goel, R. K. (2012). In–vitro antibacterial activity on human pathogens and total phenolic, flavonoid contents of Murraya paniculata Linn. Leaves. Asian Pacific Journal of Tropical Biomedicine, 2, S1660–S1663.CrossRefGoogle Scholar
  35. 35.
    Chigayo, K., Mojapelo, P. E. L., Mnyakeni-Moleele, S., & Misihairabgwi, J. M. (2016). Phytochemical and antioxidant properties of different solvent extracts of Kirkia wilmsii tubers. Asian Pacific Journal of Tropical Biomedicine, 6, 1037–1043.CrossRefGoogle Scholar
  36. 36.
    Krishnaraj, C., Jagan, E. G., Ramachandran, R., Abirami, S. M., Mohan, N., & Kalaichelvan, P. T. (2012). Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant growth metabolism. Process Biochemistry, 47, 651–658.CrossRefGoogle Scholar
  37. 37.
    Govindappa, M., Channabasava, R., Kumar, K. S., & Pushpalatha, K. C. (2013). Antioxidant Activity and Phytochemical Screening of Crude Endophytes Extracts of Tabebuia argentea Bur. & K. Sch. American Journal of Plant Sciences, 4, 1641.CrossRefGoogle Scholar
  38. 38.
    Yadav, M., Yadav, A., & Yadav, J. P. (2014). In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana lam. Asian Pacific Journal of Tropical Medicine, 7, S256–S261.CrossRefGoogle Scholar
  39. 39.
    Nayak, D., Minz, A. P., Ashe, S., Rauta, P. R., Kumari, M., Chopra, P., & Nayak, B. (2016). Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: Characterization and cytotoxic effect on MCF-7 breast cancer cell lines. Journal of Colloid and Interface Science, 470, 142–152.CrossRefGoogle Scholar
  40. 40.
    Bharathi, D., Josebin, M. D., Vasantharaj, S., & Bhuvaneshwari, V. (2018). Biosynthesis of silver nanoparticles using stem bark extracts of Diospyros montana and their antioxidant and antibacterial activities. Journal of Nanostructure in Chemistry, 8, 83–92.CrossRefGoogle Scholar
  41. 41.
    Arunachalam, R., Dhanasingh, S., Kalimuthu, B., Uthirappan, M., Rose, C., & Mandal, A. B. (2012). Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation. Colloids and Surfaces B: Biointerfaces, 94, 226–230.CrossRefGoogle Scholar
  42. 42.
    Azeez, L., Lateef, A., & Adebisi, S. A. (2017). Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. Applied Nanoscience, 7, 59–66.CrossRefGoogle Scholar
  43. 43.
    Kumar, V. A., Ammani, K., Jobina, R., Subhaswaraj, P., & Siddhardha, B. (2017). Photo-induced and phytomediated synthesis of silver nanoparticles using Derris trifoliata leaf extract and its larvicidal activity against Aedes aegypti. Journal of Photochemistry and Photobiology B: Biology, 171, 1–8.CrossRefGoogle Scholar
  44. 44.
    Bharathi, D., Ramalakshmi, S., Kalaichelvan, P. T., & Akilakalaichelvan, K. (2015). Biological synthesis of silver nanoparticles by using leaf extract of Justicia adhatoda. Der Pharmacia Letter, 7, 391–395.Google Scholar
  45. 45.
    Oluwaniyi, O. O., Adegoke, H. I., Adesuji, E. T., Alabi, A. B., Bodede, S. O., Labulo, A. H., & Oseghale, C. O. (2016). Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities. Applied Nanoscience, 6, 903–912.CrossRefGoogle Scholar
  46. 46.
    Martinez-Castanon, G. A., Nino-Martinez, N., Martinez-Gutierrez, F., Martinez-Mendoza, J. R., & Ruiz, F. (2008). Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research, 10, 1343–1348.CrossRefGoogle Scholar
  47. 47.
    Das, V. L., Thomas, R., Varghese, R. T., Soniya, E. V., Mathew, J., & Radhakrishnan, E. K. (2014). Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech, 4, 121–126.CrossRefGoogle Scholar
  48. 48.
    Gaddam, S. A., Kotakadi, V. S., Gopal, D. S., Rao, Y. S., & Reddy, A. V. (2014). Efficient and robust biofabrication of silver nanoparticles by cassia alata leaf extract and their antimicrobial activity. Journal of Nanostructure in Chemistry, 4, 82. Scholar
  49. 49.
    Bhakya, S., Muthukrishnan, S., Sukumaran, M., & Muthukumar, M. (2016). Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Applied Nanoscience, 6, 755–766.CrossRefGoogle Scholar
  50. 50.
    Jyoti, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. Leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9, 217–227.CrossRefGoogle Scholar
  51. 51.
    Johnson, P., Krishnan, V., Loganathan, C., Govindhan, K., Raji, V., Sakayanathan, P., & Palvannan, T. (2017). Rapid biosynthesis of Bauhinia variegata flower extract-mediated silver nanoparticles: An effective antioxidant scavenger and α-amylase inhibitor. Artificial cells, Nanomedicine, and Biotechnology, 46, 1488–1494.CrossRefGoogle Scholar
  52. 52.
    Bharathi, D., Vasantharaj, S., & Bhuvaneshwari, V. (2018). Green synthesis of silver nanoparticles using Cordia dichotoma fruit extract and its enhanced antibacterial, anti-biofilm and photo catalytic activity. Materials Research Express, 5, 055404.CrossRefGoogle Scholar
  53. 53.
    Moteriya, P., Padalia, H., & Chanda, S. (2017). Characterization, synergistic antibacterial and free radical scavenging efficacy of silver nanoparticles synthesized using Cassia roxburghii leaf extract. Journal of Genetic Engineering and Biotechnology, 15, 505–513.CrossRefGoogle Scholar
  54. 54.
    Prabu, K., Rajasekaran, A., Bharathi, D., & Ramalakshmi, S. (2018). Anti-oxidant activity, phytochemical screening and HPLC profile of rare endemic Cordia diffusa. Journal of King Saud University-Science.
  55. 55.
    He, Y., Wei, F., Ma, Z., Zhang, H., Yang, Q., Yao, B., & Zhang, Q. (2017). Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Advances, 7, 39842–39851.CrossRefGoogle Scholar
  56. 56.
    Netala, V. R., Bukke, S., Domdi, L., Soneya, S. G., Reddy, S., Bethu, M. S., & Tartte, V. (2018). Biogenesis of silver nanoparticles using leaf extract of Indigofera hirsuta L. and their potential biomedical applications (3-in-1 system). Artificial cells, Nanomedicine and Biotechnology, 1–11.
  57. 57.
    Khan, S. U., Saleh, T. A., Wahab, A., Khan, M. H. U., Khan, D., Khan, W. U., & Fahad, S. (2018). Nanosilver: New ageless and versatile biomedical therapeutic scaffold. International Journal of Nanomedicine, 13, 733.CrossRefGoogle Scholar
  58. 58.
    Khan, S. U., Anjum, S. I., Ansari, M. J., Khan, M. H. U., Kamal, S., Rahman, K., & Khan, D. (2018). Antimicrobial potentials of medicinal plant’s extract and their derived silver nanoparticles: A focus on honey bee pathogen. Saudi Journal of Biological Sciences.
  59. 59.
    Remya, R. R., Rajasree, S. R., Aranganathan, L., & Suman, T. Y. (2015). An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnology Reports, 8, 110–115.CrossRefGoogle Scholar
  60. 60.
    Lalitha, P. (2015). Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines. Progress in Biomaterials, 4, 113–121.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyKongunadu Arts and Science CollegeCoimbatoreIndia

Personalised recommendations