Advertisement

BioNanoScience

, Volume 9, Issue 1, pp 141–154 | Cite as

Ecofriendly Biosynthesis of Zinc Oxide and Magnesium Oxide Particles from Medicinal Plant Pisonia grandis R.Br. Leaf Extract and Their Antimicrobial Activity

  • Suresh Joghee
  • Pradheesh Ganeshan
  • Alexramani Vincent
  • Sun Ig HongEmail author
Article
  • 86 Downloads

Abstract

In this study, we report the ecofriendly biosynthesis of ZnO and MgO nanoparticles using Pisonia grandis R. Br. Leaf extract for possible applications as biomaterials and electronic materials. GC-MS results proved some of the phytocompounds were present in the ethanol extract of plant material. The successful formation of zinc oxide and magnesium oxide particles has been confirmed by FTIR, XRD, SEM, EDX, and PSA analysis. XRD analysis showed that the ZnO particles were hexagonal phase and MgO particles as face-centered cubic geometry. A plausible formation mechanism was also predicted. Antimicrobial efficacy evaluations of biosynthesized ZnO and MgO nanoparticles against Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus (gram-positive bacteria) and Escherichia coli, Salmonella paratyphi, Klebsiella pneumonia (gram-negative bacteria) and fungal strains Aspergillus Niger and Candida albicans. M. luteus and K. pneumonia exhibited good antibacterial behaviors compared to the other bacterial species.

Keywords

Pisonia grandis R. Br. ZnO and MgO nanoparticles Green chemistry Antimicrobial activity 

Notes

Funding Information

This research was supported by the Future Material Discovery Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (MSIP) of Korea (2016M3D1A1023532).

Supplementary material

12668_2018_573_MOESM1_ESM.docx (64 kb)
ESM 1 (DOCX 63 kb)

References

  1. 1.
    Zhang, M., Liu, M., Prest, H., & Fischer, S. (2008). Nanoparticles secreted from ivy rootlets for surface climbing. Nano Letters, 8, 1277–1280.CrossRefGoogle Scholar
  2. 2.
    Jeong, S., Yeo, S., & Yi, S. (2005). Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. Journal of Materials Science, 40, 5407.CrossRefGoogle Scholar
  3. 3.
    Savithramma, N., Lingarao, M., Rukmini, K., & Suvarnalatha, D. P. (2011). Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. International Journal of Chemical Technological Research, 3, 1394–1402.Google Scholar
  4. 4.
    Jha, A. K., Kumar, V., & Prasad, K. (2011). Biosynthesis of metal and oxide nanoparticles using orange juice. Journal of Bio Nanoscience, 5(2), 162–166.Google Scholar
  5. 5.
    Yu, J., Yang, J., Liu, B., & Ma, X. (2009). Preparation and characterization of glycerol plasticized-pea starch/ ZnO – carboxy methyl cellulose sodium nanocomposites. Bio Resource Technology, 100, 2832–2841.CrossRefGoogle Scholar
  6. 6.
    Tomczak, M. M., Gupta, M. K., Drummy, L. F., Rozenbak, S. M., & Naik, R. R. (2009). Morphological control and assembly of zinc oxide using biotemplate. Acta Biomaterialia, 5, 876–882.CrossRefGoogle Scholar
  7. 7.
    Vidya, C., Shilpa Hiremath, M. N., Chandra Prabha, M. A., Antony raj, L., VenuGopal, I., Jain, A., & Bansali, K. (2013). Green synthesis of zinc oxide nanoparticles by Calotropis gigantean. International Journal of Current Engineering and Technology, 118–120.Google Scholar
  8. 8.
    Sangeetha, G., Rajeshwari, S., & Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin, 46, 2560–2566.CrossRefGoogle Scholar
  9. 9.
    Ferracane, L., & Jack. (2001). Materials in density: principles and applications. Lippincott Williams & Wilkins.Google Scholar
  10. 10.
    Richard, V. N. (2002). Introduction to dental materials, 2nd edn. Elsevier Health Science.Google Scholar
  11. 11.
    Salem, J. K., El-Nahhal, I. M., Hammad, T. M., Kuhn, S., Sharekh, S. A., ElAskalani, M., & Hempelmann, R. (2015). Optical and fluorescence properties of MgO nanoparticles in micellar solution of hydroxyethyl laurdimonium chloride. Chemical Physics Letters, 636, 26–30.CrossRefGoogle Scholar
  12. 12.
    Mirzaei, H., & Davoodnia, A. (2012). Microwave assisted sol-gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of hantzsch 1, 4-dihydropyridines. Chinese Journal of Catalysis, 33, 1502–1507.CrossRefGoogle Scholar
  13. 13.
    Sushma, N. J., Prathyusha, D., Swathi, G., Madhavi, T., Deva Prasad Raju, B., Mallikarjuna, K., & Kim, H.-S. (2015). Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternatea -characterization and in vitro antioxidant studies. Applied Nanoscience, 1–8.Google Scholar
  14. 14.
    Moorthy, S. K., Ashok, C. H., Venkateswara Rao, K., & Viswanathan, C. (2015). Synthesis and characterization of MgO nanoparticles by neem leaves through green method. Materials Today Proceedings, 2, 4360–4368.CrossRefGoogle Scholar
  15. 15.
    Kumar, D., Reddy Yadav, L. S., Lingaraju, K., Manjunath, K., Suresh, D., Prasad, D., Nagabhushana, H., Sharma, S. C., Raja Naika, H., Chikkahanumantharayappa, & Nagaraju, G. (2015). Combustion synthesis of MgO nanoparticles using plant extract: structural characterization and photoluminescence studies. AIP Conference Proceedings, 1665, 050145.Google Scholar
  16. 16.
    Sugirtha, P., Divya, R., Yedhukrishnan, R., Suganthi, K. S., Anusha, N., Ponnusami, V., & Rajan, K. S. (2015). Green synthesis of magnesium oxide nanoparticles using brassica oleracea and punica granatum peels and their anticancer and photocatalytic activity. Asian Journal of Chemistry, 27(7), 2513–2517.CrossRefGoogle Scholar
  17. 17.
    Awwad, A. M., & Ahmad, A. L. (2014). Biosynthesis, characterization, and optical properties of magnesium hydroxide and oxide nanoflakes using Citrus limon leaf extract. Arabian Journal of Physical Chemistry, 1(2), 66.Google Scholar
  18. 18.
    Suresh, J., Yuvakkumar, R., Sundrarajan, M., & Hong, S. I. (2014). Green synthesis of magnesium oxide nanoparticles. Advanced Materials Research, 952, 141–144.CrossRefGoogle Scholar
  19. 19.
    Kritikar, K. R., & Basu, B. D. (1994). Indian Medicinal plants. Dehradun: International book distributors book sellers & publishers, (vol II, pp. 1561–1564).Google Scholar
  20. 20.
    Jayakumari, S., Arthanareswaran, A., Vijayalakshmi, A., Velraj, M., & Ravichandran, V. (2012). Free radicalscavenging activity of Pisoniagrandis R. Br leaves. Indian Journal of Pharmaceutical Education Research, 46, 37–40.Google Scholar
  21. 21.
    Jayakumari, S., Velraj, M., Vijayalakshmi, A., & Arthanarieswaran, A. (2011). Pharmacognostical studies on the leaves of Pisonia grandis R. Br. Research in Journal of Pharmaceutical and Biological Chemical Science, 2, 193–199.Google Scholar
  22. 22.
    Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V., & Ashokkumar, S. (2015). Bio-fabrication of zinc oxide nanoparticles using leafextract of curry leaf (Murraya koenigii) and its antimicrobial activities. Materials Science and Semiconductor Process, 34, 365–372.CrossRefGoogle Scholar
  23. 23.
    Ranganathan, D. (2014). Phytochemical analysis of Caralluma nilagiriana using GC-MS. Journal of Pharmacology and Phytochemistry, 3(1), 155–159.MathSciNetGoogle Scholar
  24. 24.
    Dool, H. V. D., & Kratz, P. D. (1963). A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography, 11, 463–471.CrossRefGoogle Scholar
  25. 25.
    Clarke, E. C. G. (1970). The forensic chemistry of alkaloids. In H. F. Manske (Ed.), the Alkaloids (Vol. XII, pp. 514–590). New York: Academic Press.Google Scholar
  26. 26.
    Marbry, T. J., Markham, K. R., & Thomas, M. B. (1970). The systematic identification of flavonoids. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  27. 27.
    Harborne, J. B. (1964). Biochemistry of phenolic compounds. London: Academic Press.Google Scholar
  28. 28.
    Egwaikhide, P. D., & Gimba, C. E. (2007). Analysis of the phytochemical content and antimicrobial activity of Plectranthus glandulosus whole plant. Middle-East Journal of Scientific Research, 2, 135–138.Google Scholar
  29. 29.
    Ugochukwu, S. C., Arukwe Uche, I., & Ifeanyi, O. (2013). Preliminary phytochemical screening of different of stem bark and roots of Dennetia tripetala G. Baker. Asian Journal of Plant Science and Research, 3, 10–13.Google Scholar
  30. 30.
    Pradheesh, G., Suresh, S., & Alexramani, V. (2015). Phytochemical and gc-ms analysis of methanolic extract of pisonia grandis R. Br. International Journal of Chemical Sciences, 13(3), 1295–1304.Google Scholar
  31. 31.
    Harada, H., Yamashita, U., Kurihara, H., Fukushi, E., Kawabata, J., & Kamei, Y. (2002). Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Research, 22(5), 2587–2590.Google Scholar
  32. 32.
    Liu, J., Shimizu, K., & Kondo, R. (2009). Antiandrogenic activity of fatty acids. Chemistry & Biodiversity, 6(4), 503–512.CrossRefGoogle Scholar
  33. 33.
    Aparna, V., Dileep, K. V., Mandal, P. K., Karthe, P., Sadasivan, C., & Haridas, M. (2012). Anti-inflammatory property of nhexadecanoic acid: structural evidence and kinetic assessment. Chemical Biological Drug Research, 80(3), 434–439.CrossRefGoogle Scholar
  34. 34.
    Sheba, D. W., Saxena, R. K., & Gupta, R. (1999). The fungistatic action of oleic acid. Current Science, 76(8), 1137–1139.Google Scholar
  35. 35.
    Komiya, T., Kyohkon, M., Ohwaki, S., Eto, J., Katsuzaki, H., Imai, K., Kataoka, T., Yoshioka, K., Ishii, Y., & Hibasami, H. (1999). Phytol induces programmed cell death in human lymphoid leukemia Molt 4B cells. International Journal of Molecular Medicine, 4(4), 377–457.Google Scholar
  36. 36.
    Inoue, Y., Hada, T. A., Shiraishi, K., Hirore, H., Hamashima, S., & Kobayashi. (2005). Biphasic effects of geranylgeraniol, terpenone and phytol on the growth of Staphylococcus aureus. Antimicrobial agent and Chemotherapy, 49(5), 1770–1774.CrossRefGoogle Scholar
  37. 37.
    Gnanasangeetha, D., & Thambavani, S. D. (2014). Facile and ecofriendly method for the synthesis method for the synthesis of zinc oxide nanoparticles using azadirachta and emblica. International Journal of Pharmaceutical Science and Research, 5(7), 2866–2873.Google Scholar
  38. 38.
    Saputra, I. S., & Yulizar, Y. (2017). Biosynthesis and characterization of ZnO nanoparticles using the aqueous leaf extract of Imperata cylindrica L. IOP Conference Series: Materials Science and Engineering, 188, 012004.CrossRefGoogle Scholar
  39. 39.
    Anand raj, L. F. A., & Jayalakshmy, E. (2015). Biosynthesis and characterization of zinc oxide nanoparticles using root extract of zingiber officinale. Oriental Journal of Chemistry, 31(1), 51–56.CrossRefGoogle Scholar
  40. 40.
    Sharma, G., Soni, R., & Jasuja, N. D. (2017). Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita. Journal of Taibah University for Science, 11, 471–477.CrossRefGoogle Scholar
  41. 41.
    Anantharaman, A., Sathyabhama, S., & George, M. (2016). Green synthesis of magnesium oxide nanoparticles using aloe vera and its applications. International Journal for Scientific Research and Development, 4, 9.Google Scholar
  42. 42.
    Iravani, S. (2011). Green Chemistry, 13, 2638–2650.CrossRefGoogle Scholar
  43. 43.
    Shubashini, K. S., Poongothai, G., & Lalitha, P. (2011). HPTLC method of quantitation of bioactive marker constituent pinitol in extracts of Pisonia grandis (R. Br). International Research Journal of Pharmacy, 2(6), 815–817.Google Scholar
  44. 44.
    Shubashini, K. S., Poongothai, G., & Lalitha, P. (2011). Anti diabetic agent Pinitol from the leaves of Pisonia grandis (R.Br.). Journal of Natural Remediation, 11(1), 39–43.Google Scholar
  45. 45.
    Kumar, N. R., Reddy, J. S., Gopikrishna, G., & Solomon, K. A. (2012). GC-MS determination of bioactive constituents of Cycas beddomei cones. International Journal of Pharmaceutical Biological Sciences, 3(3), 344–350.Google Scholar
  46. 46.
    Jannathul Firdhouse, M., Lalitha, P., Shubashini, K., & Sripathi. (2012). Novel synthesis of silver nanoparticles using leaf ethanol extract of Pisonia grandis (R. Br). Der Pharma Chemica, 4(6), 2320–2326.Google Scholar
  47. 47.
    Jannathul Firdhouse, M., Lalitha, P., & Sripathi, S. K. (2014). An undemanding method of synthesis of gold nanoparticles using pisonia grandis (R.Br). Digest Journal of Nanomaterials and Biostructures, 9(1), 385–393.Google Scholar
  48. 48.
    Vijayalakshmi, R., & Rajendran, V. (2012). Synthesis and characterization of nano-TiO2 via different methods. Archives of Applied Science and Research, 4(2), 1183–1190.Google Scholar
  49. 49.
    Rizwan, W., Young-Soon, K., Amrita, M., Soon-Il, Y., & HyungShik, S. (2010). Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity. Journal of Nanoscale Research Letters, 5, 1675–1681.CrossRefGoogle Scholar
  50. 50.
    Sunita, J., Suresh, G., Madhav, N., & Anjali, R. (2011). Copper oxide nanoparticles, synthesis, characterization and their antibacterial activity. Journal of Cluster Science, 22, 121–129.CrossRefGoogle Scholar
  51. 51.
    Hamouda, T., Myc, A., Donovan, B., Shih, A. Y., Reuter, J. D., & Baker, J. R. (2001). A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Research in Microbiology, 156, 1–7.CrossRefGoogle Scholar
  52. 52.
    Dibrov, P., Dzioba, J., Gosink, K. K., & Hase, C. C. (2002). Mechanism of antimicrobial activity of ag (+) in Vibrio cholera. Antimicrobial Agents and Chemothearphy, 46, 2668–2670.CrossRefGoogle Scholar
  53. 53.
    Dragieva, I., Stoeva, S., Stoimenov, P., Pavlikianov, E., & Klabunde, K. (1999). Complex formation in solutions for chemical synthesis of nanoscaled particles prepared by borohydride reduction process. Nanostructure Materials, 12, 267–270.CrossRefGoogle Scholar
  54. 54.
    Sharmila, G., Muthukumaran, C., Sandiya, K., Santhiya, S., Sakthi Pradeep, R., Manoj Kumar, N., Suriyanarayanan, N., & Thirumarimurugan, M. (2018). Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract. Journal of Nanostructure in Chemistry, 8, 293–299.CrossRefGoogle Scholar
  55. 55.
    Ibrahem, E. J., Thalij, K. M., Saleh, M. K., & Badawy, A. S. (2017). Biosynthesis of zinc oxide nanoparticles and assay of antibacterial activity (2017). American Journal of Biochemistry and Biotechnology, 13(2), 63.69.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Suresh Joghee
    • 1
  • Pradheesh Ganeshan
    • 2
  • Alexramani Vincent
    • 3
  • Sun Ig Hong
    • 1
    Email author
  1. 1.Department of Nanomaterials EngineeringChungnam National UniversityDaejeonSouth Korea
  2. 2.Department of ChemistrySNS College of TechnologyCoimbatoreIndia
  3. 3.Department of Chemistry, Natural products labSt. Joseph’ CollegeTrichyIndia

Personalised recommendations